

DEICORP PROJECTS PETERSHAM PTY LTD

GEOTECHNICAL INVESTIGATION REPORT

3-7 REGENT STREET, 13-17 REGENT STREET, & 287-309 TRAFALGAR STREET, PETERSHAM, NSW

> Report E22913 GA 24 May 2016

Report Distribution

Geotechnical Investigation Report

3-7 Regent Street, 13-17 Regent Street & 287-309 Trafalgar Street, Petersham, NSW

El Report No. E22913 GA

Date: 24 May 2016

Copies	Recipient
1 Soft Copy (PDF – Secured, issued by email)	Mr Paul Signorelli DeiCorp Projects Petersham Pty Ltd
	Suite 301, Level 3, 161 Redfern Street
	REDFERN NSW 2016
1 Original (Saved to Digital Archives)	Environmental Investigations Australia
	Suite 6.01, 55 Miller Street
	PYRMONT NSW 2009

Authors:

Stephen Kim

Geotechnical Engineer

Technical Reviewer:

Bull

Joseph Chaghouri Senior Geotechnical Engineer

Revision De	etails	Date	Amended By
Ori	iginal	24 May 2016	

© Environmental Investigations Australia Pty Ltd 2016 T/A Environmental Investigations (EI)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

CONTENTS

1	INTRODUCTION	.1
1.1	BACKGROUND	.1
1.2	PROPOSED DEVELOPMENT	.1
1.3	Investigation Objectives	.2
1.4	SCOPE OF WORKS	.2
1.5	INVESTIGATION CONSTRAINTS	.3
2	SITE DESCRIPTION	.4
2.1	SITE DESCRIPTION AND IDENTIFICATION	.4
2.2	LOCAL LAND USE	.5
2.3	REGIONAL SETTING	.6
3	INVESTIGATION RESULTS	.7
3.1	STRATIGRAPHY	
3.2	GROUNDWATER OBSERVATIONS	
3.3	TEST RESULTS	10
4	RECOMMENDATIONS	12
4.1	GEOTECHNICAL ISSUES	12
4.2	DILAPIDATION SURVEYS	12
4.3	Excavation Methodology	12
4.4	GROUNDWATER CONSIDERATIONS	14
4.5	EXCAVATION RETENTION	
4.6	FOUNDATIONS	
4.7	LOWEST BASEMENT FLOOR SLAB	
5	RECOMMENDATIONS FOR FURTHER GEOTECHNICAL SERVICES	
6	STATEMENT OF LIMITATIONS	
7	REFERENCES	
8	ABBREVIATIONS	21

TABLES

Table 2-1	Summary of Site Information	. 4
Table 2-2	Summary of Local Land Use	. 5
Table 2-3	Topographic, Geological and Hydrogeological Information	. 6
Table 3-1	Summary of Subsurface Conditions	. 7
Table 3-2	Approximate Depth and RL to Top of Unit	. 8
Table 3-3	Summary of Groundwater Levels	. 9
Table 3-4	Summary of Laboratory Test Results	11
Table 4-1	Summary of Units Expected to be Encountered During Excavation	12
Table 4-2	Summary of Groundwater Levels	14
Table 4-3	Geotechnical Design Parameters	17

FIGURES

- 1 Site Locality Plan
- 2 Borehole Location Plan

APPENDICES

- A Borehole Logs and Explanatory Notes
- B Laboratory Certificates
- C Vibration Limits
- D Important Information

1 INTRODUCTION

1.1 BACKGROUND

At the request of DeiCorp Projects Petersham Pty Ltd (Deicorp), Environmental Investigations Australia Pty Ltd (EI) has carried out a Geotechnical Investigation (GI) for the proposed development at 3-7 Regent Street, 13-17 Regent Street & 287-309 Trafalgar Street, Petersham, NSW (the Site).

This GI report has been prepared to provide advice and recommendations to assist the designers in the preparation of initial designs for the proposed development. The investigation has been carried out in accordance with the agreed scope of works outlined in EI's proposal referenced P13544.2, dated 1 December 2015, and DeiCorp's signed "Authorisation to Proceed" form dated February 2016.

EI has also prepared a *Detailed Site Investigation Report* (DSI) for the site (E22913 AA_Rev0, 9 May 2016). This GI report should be read in conjunction with the DSI report.

1.2 PROPOSED DEVELOPMENT

To assist us with the preparation of this GI report, Deicorp has supplied EI with:

- Architectural drawings prepared by Architecture & Building Works for 3-7 Regent Street (Site 1) Project No. PN15010, Drawing Nos. A-0910, A-1000, A-1010, A-1020, A-1030, A-1040, A-1050, A-1060, A-1070, A-1080, A-1090, A-1400, A-2000, issue A, dated 25 November 2015;
- Architectural drawings prepared by Candalepas Associates for 13-17 Regent Street (Site 2) Job No. 5766, Drawing Nos. SK-1000, SK-1101 to SK-1105, SK-1161, SK-1162, SK-1201, SK-1301 to SK-1303, SK-1851, issue P5, dated 20 November 2015;
- Architectural drawings prepared by Nordon Jago Architects for 287-309 Trafalgar Street (Site 3) Job No. DEI00614, Drawing Nos. DN.001 to DN.008, DN.010 to DN.020, and DN.120, latest issue E, dated 25 November 2015;
- Detailed site survey of Site 3 prepared by Daw & Walton Pty Ltd Job No. 2471-14, dated 9 December 2014; and
- Detailed site survey of Site 1, 2, and 3 prepared by Usher & Company Plan Reference. 4566-DET, sheets 1-8 of 8, Issue 2, dated 24 October 2012.

Based on the above, we understand that the proposed development will involve the demolition of the existing site structures and redevelopment of the site into three, multi-storey mixed-use commercial and residential apartment buildings. The site is split into three sites and the proposed development at each site is outlined below:

- Site 1 3-7 Regent Street: A seven-storey residential apartment building over two-level basement carpark. The lowest basement level (B2) is proposed to have a Finish Floor Level (FFL) of Reduced Level (RL) 31.25m Australian Height Datum (AHD). El has assumed a Bulk Excavation Level (BEL) of RL 30.95m AHD to allow for the construction of the basement slab. To achieve the latter, excavations ranging from depths of about 6.1m at the western end to 12.9m Below Existing Ground Level (BEGL) at the eastern end will be required. Locally deeper excavations may be required for footings, service trenches and lift overrun pits.
- Site 2 13-17 Regent Street: A six-storey residential apartment building over a stepped two to three-level basement carpark. The lowest basement level (B3) is proposed to have a FFL of RL 30.7m AHD, while the second basement level (B2) is proposed to have a FFL of RL 33.7m AHD. EI has assumed a BEL of RL 30.4m and 33.4m AHD for B3 and B2, respectively, to allow for the construction of the basement slab. To achieve the latter, excavations depths between about 9.6m to 14.6m BEGL will be required for B3, and depths between about 5.6m to 6.6m BEGL will be required for B2. Locally deeper excavations may be required for footings, service trenches and lift overrun pits.
- Site 3 287-309 Trafalgar Street: An eight-storey mixed-use residential apartment building over four-level basement carpark. The ground floor of this building is to be occupied by Petersham RSL. The lowest

basement level (B4) is proposed to have a FFL of RL 23.1m AHD. EI has assumed a BEL of RL 22.8m AHD to allow for the construction of the basement slab. To achieve the latter, excavations ranging from depths of about 8.4m at the north-western end to 14.7m BEGL at the south-eastern end will be required. Locally deeper excavations may be required for footings, service trenches and lift overrun pits.

1.3 INVESTIGATION OBJECTIVES

The objective of the GI was to assess site surface and subsurface conditions, and to provide geotechnical advice and recommendations addressing the following:

- Dilapidation Surveys;
- Excavation methodologies and monitoring requirements;
- Rock Excavation;
- Groundwater considerations;
- Excavation support requirements, including geotechnical design parameters for retaining walls and shoring systems;
- Building foundation options, including;
 - Preliminary design parameters.
 - Earthquake loading factor in accordance with AS1170.4:2007.
- Requirements for additional geotechnical works.

1.4 SCOPE OF WORKS

The scope of works for the GI included:

- Preparation of a Work Health and Safety Plan;
- Review of relevant geological maps for the project area;
- Site walkover inspection by a Geotechnical Engineer to assess topographical features and site conditions;
- Scanning of proposed borehole locations for buried conductive services using a licensed service locator with reference to Dial Before You Dig (DBYD) plans;
- Auger drilling of thirteen boreholes as follow:
 - Site 1: One borehole, BH8M, was drilled by a track-mounted drill rig using solid flight augers equipped with a 'Tungsten-Carbide' (T-C) bit. BH8M was auger drilled to a depth of about 5.6m BEGL (an RL of about 32.1m AHD).
 - Site 2: Four boreholes, BH9M to BH11M, and BH12, were drilled by a track-mounted drill rig using solid flight augers equipped with a 'Tungsten-Carbide' (T-C) bit. BH9M, BH10M, BH11M, and BH12 were auger drilled to depths of about 4.5m (an RL of about 34.8m AHD), 1.5m (an RL of about 41.5m AHD), 4.0m (an RL of about 39.5m AHD), and 6.0m BEGL (an RL of about 34.0m AHD), respectively.
 - Site 3: Eight boreholes, BH1M, BH2, BH3, BH4M, BH5, BH6M, BH7, and BH15M, were drilled by a track-mounted drill rig using solid flight augers equipped with a 'Tungsten-Carbide' (T-C) bit. The boreholes were auger drilled to depths ranging from about 4.5m to 9.0m BEGL, or RLs between 24.5m to 33.9m AHD.

The surface levels as shown on the borehole logs were approximated from spot levels shown on the supplied survey plans. Approximate borehole locations are shown on **Figure 2**.

• Standard Penetration Testing (SPT) was carried out during auger drilling of the boreholes to assess soil strength/relative densities. These were augmented, where possible, by hand penetrometer readings on

cohesive soil samples collected in the SPT split tube sampler. Soil samples were sent to Macquarie Geotechnical Pty Ltd (Macquarie) and SGS Australia Pty Ltd (SGS), which are National Australian Testing Authority (NATA) accredited laboratories, for testing and storage.

- The strength of the shale bedrock in the augered sections of the boreholes was assessed by observation of the auger penetration resistance using a T-C drill bit, examination of the recovered rock cuttings, and rock moisture content tests. It should be noted that rock strengths assessed from augered boreholes are approximate and strength variances can be expected.
- Continuation of eleven boreholes using NMLC diamond coring techniques to depths ranging from 9.6m (an RL of about 28.1m) in BH8M to 17.2m (an RL of about 20.2m) in BH5. Rock cores recovered from the boreholes were boxed, logged, photographed and sent to Macquarie for point load strength index testing and storage. The test results are presented in Appendix A and Appendix B, and the rock core photographs are presented in Appendix A. The termination depths are outlined below:
 - Site 1: One borehole, BH8M, was extended to a termination depth of about 9.6m BEGL (an RL of about 28.1m AHD).
 - Site 2: Three boreholes, BH9M, BH10M, BH11M, were extended to termination depths of about 13.0m (an RL of about 26.3m AHD), 16.0m (an RL of about 27.0m AHD), and 16.0m BEGL (an RL of about 27.5m AHD), respectively.
 - ► Site 3: Seven boreholes, BH1M, BH2, BH3, BH4M, BH5, BH7, and BH15M, were extended to termination depths between 12.7m to 17.2m BEGL, or RLs between 17.2m to 20.2m AHD.
- Measurements of groundwater seepage/levels, where possible, in the augered sections of the boreholes during and shortly after completion of auger drilling;
- Following the completion of coring, BH1M, BH4M, BH6M, BH8M, BH9M, BH10M, BH11M, and BH15M were converted to monitoring wells, and bailed dry of all the water introduced during the coring process on the day of installation; and
- Preparation of this GI report.

An El Geotechnical Engineer was present on site to set out the borehole locations, direct the testing and sampling, log the subsurface conditions and record groundwater levels.

1.5 INVESTIGATION CONSTRAINTS

The GI was limited by the intent of the investigation and the presence of the existing structures on site, particularly on Site 1 and Site 3. The discussions and advice presented in this report are intended to assist in the preparation of initial designs for the proposed development. Further geotechnical investigations should be carried out following demolition to confirm the subsurface conditions in these areas.

2 SITE DESCRIPTION

2.1 SITE DESCRIPTION AND IDENTIFICATION

The site identification details and associated information are presented in **Table 2-1** below while the site locality is shown on **Figure 1**.

Table 2-1 Summary	of Site Information
Information	Detail
Street Address	3-7 Regent Street, 13-17 Regent Street & 287-309 Trafalgar Street, Petersham, NSW 2049
Lot and Deposited Plan (DP) Identification	Site 1: Lot 1 in DP 629058. Site 2: Lot 2 in DP 830175. Site 3: Lot 10 in DP 1004198, and Lot 1 in DP 1208130.
Local Government Authority	Marrickville Council
Parish	Petersham
County	Cumberland
Current Zoning	R4 – High Density Residential (Marrickville Local Environment Plan, 2011)
Site Description	Site 1: Occupied by a three-storey brick and concrete commercial building, operating as "Petersham RSL Club". At the time of the investigation, the building appeared to be in good external condition based on a cursory inspection. The building overlies a single-level basement. The extent of the basement was unknown at the time of writing this report. The north-eastern corner of Site 1 is occupied by a brick-paved council car park. A cement-rendered retaining wall located at the south-western corner of the site retaining about 0.7m of material.
	The Sydney Water DBYD plans (Sequence No. 51049122, dated 23 February 2016) indicate that a 225mm diameter vitrified clay sewer main runs in a northwest-southeast orientation beneath the northern section of the site. The sewer is shown to have an upstream depth to invert ranging from 1.0m to 1.7m BEGL.
	Site 2: Occupied by an asphaltic-concrete paved council car park. The pavement was observed to be in poor to moderate condition, with potholing and cracking observed. Various garden areas with large trees are located across the car park.
	Low height timber retaining walls (<0.5m high) bound the site at the northern and western site boundaries. At these sections, the site lies about 0.4m higher than street level. The southern end of the site is bound by a brick retaining wall up to about 1m high, followed by a soil batter falling to the north at an angle of about 15°. At the southern end, the street level is about 2m higher than the site.
	The Sydney Water DBYD plans referenced above indicate that a 225mm diameter salt glazed ware sewer main runs in a roughly east-west orientation beneath the centre of the site. The sewer is shown to have an upstream depth to invert ranging from 3.4m to 4.1m BEGL.
	Site 3: Three, one to two-storey brick commercial warehouses occupy the western section of the site. The warehouses appeared to be in moderate to poor external conditions based on a cursory inspection, with cracking observed on the external walls.
	The north eastern and southern portions of the site were occupied by a concrete and asphaltic-concrete paved car park. The asphaltic-concrete sections of the pavement were observed to be in poor to moderate condition, with potholing and cracking observed. The concrete paved carpark included a single-level basement car park. The concrete pavement appeared to be in good condition.
Site Area	The site area is approximately 9,800m ² .

2.2 LOCAL LAND USE

The site is situated within an area of mixed residential and commercial use. Current uses on surrounding land are described in **Table 2-2** below.

Table 2-2	Summary of Local Land Use
-----------	---------------------------

Direction	Land Use Description									
Relative to Site	Site 1	Site 2	Site 3							
North	Two three-storey brick residential apartment buildings with no basement. On-grade car parking occupies the rear of the property. The closest building has a setback of about 4m from the northern site boundary.	Fisher Street, a two-lane concrete paved street, followed by Site 1 .	Trafalgar Street, a two-lane asphaltic-concrete and concrete paved street. Beyond Trafalgar Street lies the Sydney Trains T2 and T1 rail corridor, and Petersham Station. The rail corridor has a setback of about 19m from the northern site boundary, and the closest rail line has a setback of about 36m. The rail line has an east-west orientation.							
East	A narrow asphaltic-concrete laneway, followed by a four-storey concrete and glass office building (Marrickville Council). At the time of writing this GI report, it is unknown whether this building has a basement. The building has a setback of about 3m.	One to three-storey brick residential and commercial buildings. The closest building lies immediately adjacent to the eastern site boundary. The buildings do not appear to have a basement.	Regent Street, a two-lane asphaltic-concrete street, followed by Site 1 .							
South	Fisher Street, followed by Site 2 and two to three-storey brick residential buildings. The closest building has a setback of about 18m from the southern site boundary. The buildings do not appear to have a basement.	New Canterbury Road, a two-lane asphaltic-concrete road, followed by the Heritage listed Petersham Water Tower and elevated tank. The water tower has a setback of about 39m from the southern Site Boundary. New Canterbury Road is a Roads and Maritimes Services (RMS) asset.	Two-storey brick residential terraces, a two-storey brick community hall, and a two-storey brick residential apartment building lie southwest of the site. The terraces lie immediately adjacent to the site boundary. Beyond these structures lies Fisher Street, followed by one to three-storey brick and weatherboard residential buildings. These buildings do not appear to have a basement.							
West	Regent Street, followed by Site 3.	Regent Street, followed by two to three-storey brick residential buildings with no basement. The residential buildings have a setback of about 19m from the western site boundary.	Along Trafalgar Street: Two-storey brick commercial buildings with no basement. The closest building lies immediate adjacent to the western boundary. Along Fisher Street: Two-storey brick residential terraces, a two- storey brick community hall, and a two-storey brick residential apartment building. The terraces lie immediately adjacent to the site boundary.							

2.3 REGIONAL SETTING

The site topography, geological and hydrogeological information for the locality is summarised in Table 2-3 below.

Table 2-3	Topographic, Geological and Hydrogeological Information
-----------	---

Attribute	Description
Topography	The Site ground topography generally slopes downwards towards the north-west at an angle of about 5°. Site 1 falls from an RL of about 43.3m AHD at the south-eastern corner of the site to RL 37.0m AHD at the north-western corner. Site 2 falls from an RL of about 46.1m AHD at the south-eastern corner of the site to RL 38.5m AHD at the north-western corner. Site 3 falls from an RL of about 37.5m AHD at the south-eastern corner of the site to RL 31.4m AHD at the north-western corner.
Regional Geology	Information on regional sub-surface conditions, referenced from the Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9130 (DMR 1991) indicates the site to be underlain by Ashfield Shale. Ashfield Shale consists of laminite and dark grey siltstone.
	The Geological Map also indicates the presence of a dyke in a northeast-southwest orientation, about 80m northwest of the site, a dyke in a north-south orientation, about 50m west of the site, and a dyke in a northeast-southwest orientation, close to the south-eastern corner of the site. Such features can provide a pathway for ground and surface water flow and therefore result in deep weathering of the rock profile.

Page |7

INVESTIGATION RESULTS 3

3.1 **STRATIGRAPHY**

For the development of a site-specific geotechnical model, the observed stratigraphy during the GI has been grouped into 7 geotechnical units. A summary of the subsurface conditions across the site, interpreted from the investigation results, is presented in Table 3-1 below. The depths and RLs of the top of Unit in each Site are outlined in Table 3-2 below. More detailed descriptions of subsurface conditions at each borehole location are available on the borehole logs presented in Appendix A. The details of the method of soil and rock classification, explanatory notes and abbreviations adopted on the borehole logs are also presented in Appendix A.

Unit	Material ¹	Observed Thickness (m)	Material Description ¹	Comments
			CONCRETE/	Concrete up to 200mm thick observed in BH1M and BH8M. Asphaltic-Concrete (A-C) up to 50mm thick observed in BH2, BH3, BH4M, BH5, BH6M, BH7, BH9M, BH10M, BH11M, BH12, and BH15M.
1	Fill	0.1 to 1.9	A-C over FILL	The concrete or A-C pavement was underlain by gravelly sand, silty clay, silty gravelly clay, and gravelly clayey fill, with varying content of gravel and sand. The fill appeared to be poorly compacted and "uncontrolled".
				Fill was not encountered in BH8M, BH10M, and BH11M.
	Residual			Generally stiff to hard silty clay of medium to high plasticity. The silty clay grades into weathered shale at depth.
2	Soil	0.2 to 2.1	Silty CLAY	SPT N values range from 7 to 19, and hand penetrometer readings, where possible, on the SPT samples ranged from 100kPa to 500kPa.
				Not encountered in BH10M, BH11M, and BH12
				Generally extremely low to very low strength, extremely to distinctly weathered shale with bands of highly fractured low to medium strength shale.
3	Class V Shale	3.2 to 11.6	SHALE	Defects in Unit 3 included bedding partings, joints, and up to 92% decomposed and crushed seams/zones.
	Unaio			Core loss of 100mm to 2500mmm thick was observed in some boreholes. Core loss is inferred to be decomposed clay seams or extremely weathered shale.
				Encountered in all boreholes.
	Class IV			Generally very low strength, distinctly weathered shale, with bands of highly fractured low to high strength shale.
4	Shale	1.5 to 6.7 ²	SHALE	Defects in Unit 4 included bedding partings, joints, and up to 17% decomposed and crushed seams/zones.
				Encountered in BH2, BH3, BH4M, BH5, BH6M, and BH12.
				Low to medium strength, distinctly to slightly weathered shale.
5	Class III	0.9 to 5.9 ³	SHALE	Defects in Unit 5 include bedding partings, joints, and up to 6% decomposed and crushed seams.
	Shale			Core loss of 200mm was observed in BH10M. Core loss is inferred to be decomposed clay seams or extremely weathered shale.
				Encountered in BH7, BH8M, BH9M, BH10M, and BH11M.
	Class II			Medium to high strength, slightly weathered to fresh shale.
6	Shale	2.5 to 6.9 ⁴	SHALE	Defects in Unit 6 include bedding partings, joints, and 2% decomposed and crushed seams.
				Encountered in BH2, BH3, BH4M, BH5, BH9M, BH10M, and BH11M.
7	Class I	4.2 to 4.3 ⁵	SHALE	High strength, fresh shale.
I	Shale	4.2 (U 4.3 °	SHALE	Defects in Unit 7 include sub-horizontal bedding partings and joints. Encountered in BH1M and BH15M only.

Notes:

1 For more detailed descriptions of the subsurface conditions, reference should be made to the borehole logs attached to Appendix A.

2 Observed up to termination depth in BH6M and BH12

3 4 Observed up to termination depth in BH7, BH8M, BH9M, BH10M and BH11M

Observed up to termination depth in BH2, BH3, BH4M and BH5

5 Observed up to termination depth in BH1M and BH15M

Approximate Depth and RL to Top of Unit Table 3-2

		Approximate Depth to Top of Unit (m BEGL) [Approximate RL to Top of Unit (m AHD)] ¹													
Unit	Material	Site 1		Sit	e 2					Site	9 3				
		BH8M	BH9M	BH10M	BH11M	BH12	BH1M	BH2	BH3	BH4M	BH5	BH6M	BH7	BH15M	
		0	0	0	0	0	0	0	0	0	0	0	0	0	
1	Fill	[37.7]	[39.3]	[43.0]	[43.5]	[40.5]	[33.0]	[32.7]	[34.5]	[35.5]	[36.4]	[36.7]	[36.6]	[31.4]	
		0.2	1.9				0.9	0.8	1.5	1.5	0.5	0.1	2.3	1.5	
2	Residual Soil	[37.5]	[37.4]	-	-	-	[32.1]	[31.9]	[33.0]	[34.0]	[35.9]	[36.6]	[34.3]	[29.9]	
		0.8	2.1	0.1	0.1	1.3	3.0	1.8	3.0	2.2	0.8	2.5	3.4 3.3		
3	Class V Shale	[36.9]	[37.2]	[41.5]	[43.4]	[39.2]	[30.0]	[30.9]	[31.5]	[33.3]	[35.6]	[29.2]	[33.2]	3.4 3.3 [33.2] [28.1] 11.1 8.4	
		8.7	7.6	7.2	11.6	4.5	8.5	8.3	7.4	5.5	7.5	7.5	11.1 8.4	8.4	
4	Class IV Shale	[29.0]	[31.7]	[35.8]	[31.9]	[34.5] ^{2, 3}	[24.5]	[24.4]	[27.1]	[30.0]	[28.9]	[27.7] ^{2, 3}	[25.5]		
_		8.7	7.6	7.2	11.6		10.0	12.0	14.1	9.0			11.1	8.4	
5	Class III Shale	[29.0] ²	[31.7] ²	[35.8]	[31.9]	-	[23.0]	[20.7]	[20.4]	[26.5]	-	-	[25.5] ²	[23.0]	
				12.0	13.5		10.0	12.0	14.1	9.0				8.4	
6	Class II Shale	-	-	[31.0] ²	[30.0] ²	-	[23.0]	[20.7] ²	[20.4] ²	[26.5] ²	-	-	-	[23.0]	
							10.0							8.4	
7	Class I Shale	-	-	-	-	-	[23.0] ²	-	-	-	-	-	0 0 [36.6] [31.4] 2.3 1.5 [34.3] [29.9] 3.4 3.3 [33.2] [28.1] 11.1 8.4 [25.5] [23.0] 11.1 8.4 [25.5] ² [23.0] 8.4 - - 8.4	[23.0] ²	

Notes:

Approximate depth and level at the time of our investigation. Depths and levels may vary across the site. 1

Observed up to borehole termination depth. 2

Inferred based on augered borehole. Not observed in Borehole 3

-

3.2 **GROUNDWATER OBSERVATIONS**

Groundwater seepage was encountered during the auger drilling of BH1M, BH6M, and BH12 at depths of about 4.5m (or RL 28.5m AHD), 6.0m (or RL 30.7m AHD), and 4.5m BEGL (or RL 36.0m AHD). The water induced during the coring process of the boreholes precluded further observations of the groundwater levels. However, following the completion of the fieldwork, seven monitoring wells were installed in BH1M, BH4M, BH6M, BH9M, BH10M, BH11M, and BH15M for further groundwater monitoring, and were bailed dry on the day of installation. Furthermore, the groundwater levels were recorded on 7 to 11 March 2016, 5 April 2016, and 29 April 2016.

Groundwater levels measured during fieldwork and groundwater monitoring visits are presented in Table 3-2 below.

Monitoring Well / Borehole ID	Date of Observation	Approximate Depth to Groundwater (m BEGL)	Approximate RL of Groundwater (m AHD) ¹	Assumed Bulk Excavation Level (m AHD)
BH8M	29-4-16	1.6	36.1	Site 1 30.95
	10-3-16	2.1	37.2	00.00
DUAL	11-3-16	3.4	35.9	
BH9M	5-4-16	3.4	35.9	
-	29-4-16	3.0	36.3	
DUIANA	10-3-16	2.0	41.0	Site 2
BH10M	29-4-16	2.8	40.2	30.7
	10-3-16	1.8	41.7	
DUM	11-3-16	3.3	40.2	
BH11M	5-4-16	4.2	39.3	
	29-4-16	3.7	39.8	
BH1M	7-3-16	1.8	31.2	
	8-3-16	1.9	31.1	
	9-3-16	1.9	31.1	
	10-3-16	1.5	31.5	
	11-3-16	1.5	31.5	
	5-4-16	2.0	31.0	
	29-4-16	1.5	31.5	
	8-3-16	3.8	31.7	
	9-3-16	3.5	32.0	
DUIM	10-3-16	3.3	32.2	Site 3
BH4M	11-3-16	3.5	32.0	22.8
	5-4-16	3.9	31.6	
	29-4-16	3.5	32.0	
DUCM	11-3-16	3.2	33.5	
RHØM	29-4-16	2.7	34.0	
	9-3-16	2.0	29.4	
	10-3-16	1.9	29.5	
BH15M	11-3-16	2.0	29.4	
	5-4-16	2.3	29.1	
	29-4-16	1.8	29.6	

Table 3-3 Summary of Groundwater Levels

Notes:

Approximated from spot levels shown on the supplied survey plans.

3.3 TEST RESULTS

Six soil samples and four groundwater samples were selected for laboratory testing to assess the following:

- Atterberg Limits and Linear Shrinkage;
- Soil and Rock Moisture Content;
- Soil and groundwater aggressivity (pH, Chloride and Sulfate content and electrical conductivity).

A summary of soil and groundwater test results is provided in Table 3-4 below.

119 selected rock core samples were tested by Macquarie to estimate the Point Load Strength Index (Is₅₀) values to assist with rock strength assessment. The results of the testing are summarised on the attached borehole logs.

Laboratory test certificates are presented in Appendix B.

The Atterberg Limits results on Unit 2 indicated these clays to be of high plasticity and have a high potential for shrink /swell movements with changes in moisture content (Class H1).

The point load strength index test results correlated reasonably well with our field assessments of rock strength. The approximate Unconfined Compressive Strength (UCS) of the rock core, estimated from correlations with the point load strength index test results, varied from <1 MPa to 88 MPa.

The investigation indicated low permeability soils were present above the groundwater table. In accordance with Tables 6.4.2(C) and 6.5.2(C) of AS 2159:2009 'Piling – Design and Installation', the results of the pH, chloride and sulfate content and electrical conductivity of the soil, provided the following exposure classifications:

Unit 1 – Fill:

- 'Non-aggressive' for buried concrete structural elements; and
- 'Non-aggressive' for buried steel structural elements.

Unit 2 – Residual Soil:

- 'Mild' for buried concrete structural elements; and
- 'Non-aggressive' for buried steel structural elements.

Unit 3 – Class V Shale:

- 'Mild' to 'Non-aggressive' for buried concrete structural elements; and
- 'Non-aggressive' for buried steel structural elements.

Groundwater:

- 'Mild' to 'Non-aggressive' for buried concrete structural elements; and
- 'Mild' to 'Moderate' for buried steel structural elements.

In accordance with Table 4.8.1 of AS3600-2009 'Concrete Structures' Unit 1, 2, and 3 material would be classified as exposure classification 'A1', 'A2', and 'A1' to 'A2', respectively, for concrete in sulfate soils.

Test/ Sa	mple ID	BH3_ 1.5-1.95	BH8M_ 0.8-0.95	BH9M_ 1.4-1.5	BH10M_ 0.9-1.0	BH7_ 0.5-0.9	BH15M_ 3.0-3.3	BH8M	BH10M	BH15M
Unit		2	3	1	3	1	2	-	-	-
Mater	rial Description ¹	Silty Clay	SHALE	FILL	SHALE	FILL	Silty CLAY	GROUND WATER	GROUND WATER	GROUND WATER
ē,	Liquid Limit (%)	63	-	-	-	-	-	-	-	-
Unit Material Guessivity Linear S	Plastic Limit (%)	28	-	-	-	-	-	-	-	-
	Plasticity Index (%)	35	-	-	-	-	-	-	-	-
(%) Linear Shrinkage (%)		14.0	-	-	-	-	-	-	-	-
	рН	-	4.7	5.8	8.0	7.3	5.1	6.1	5.3	6.5
	Electrical Conductivity (µS/cm)	-	49	500	110	270	360	610	1200	1000
	Sulfate SO ₄ (mg/kg)	-	67	360	64	300	110	140	270	190
	Chloride Cl (mg/kg)	-	3.7	19	11	63	16	49	140	110
(mg/kg) Chloride Cl		25.5	9.1	16	6.7	17	24	-	-	-

Table 3-4 Summary of Laboratory Test Results

Notes:

1. More detailed descriptions of the subsurface conditions at each borehole location are available on the borehole logs presented in Appendix A.

4 **RECOMMENDATIONS**

4.1 **GEOTECHNICAL ISSUES**

Based on the results of the investigation, we consider the following to be the main geotechnical issues for the proposed development:

- Basement excavation methodology;
- Rock excavation;
- Groundwater within the depth of the basement excavation;
- Excavation retention to limit lateral deflections and ground loss as a result of excavations, resulting in damage to nearby structures;
- Existing basement structures in Site 1 and Site 3;
- Foundation design for building loads;
- Access constraints precluded investigation within the majority of **Site 1** and the western corner of **Site 3**. Further investigations to confirm the subsurface conditions in **Site 1** and the western corner of **Site 3** is recommended;
- Proximity to Sydney Trains Corridor which is located north of Site 3; and
- Proximity to New Canterbury Road, an RMS asset road which is located south of Site 2.

4.2 DILAPIDATION SURVEYS

Prior to excavation and construction, we recommend that detailed dilapidation surveys be carried out on all structures and infrastructures surrounding the site that falls within the zone of influence of the excavation. The zone of influence of the excavation is defined by a distance back from the excavation perimeter of twice the total depth of the excavation. The reports would provide a record of existing conditions prior to commencement of the work. A copy of each report should be provided to the adjoining property owner who should be asked to confirm that it represents a fair assessment of existing conditions. The reports should be carefully reviewed prior to demolition and construction.

4.3 EXCAVATION METHODOLOGY

4.3.1 Excavation Assessment

Prior to any excavation commencing, we recommend that reference be made to the WorkCover Excavation Work Code of Practice – July 2015.

Furthermore, any buried services which run below the site will require diversion prior to the commencement of excavation or alternatively be temporarily supported during excavation, subject to permission or other instructions from the relevant service authorities.

Based on the results of the investigation, the proposed basement excavations for Sites 1, 2, and 3 will therefore extend through the units summarised in **Table 4-1** below. A retention system must be installed prior to excavation commencing.

Table 4-1	Summary of Units E	xpected to be Encountered	During Excavation
			During Excuration

Site	Assumed BEL RL (m AHD)	Expected Units
1	30.95	1, 2, and 3
2	B2: 33.4	B2: 1, 2, 3, 4, and 5
Z	B3: 30.4	B3: 1, 2, 3, 4, 5, and 6
3	22.8	All Units

Units 1, 2, 3, and 4 could be excavated using buckets of large earthmoving Hydraulic Excavators, particularly if fitted with 'Tiger Teeth', with some light to moderate ripping.

Excavation of Unit 5, 6 and 7 is expected to present hard or heavy ripping, or "hard rock" excavation conditions. Ripping of Unit 5 would require a high capacity and heavy bulldozer of at least D9 or similar, and Unit 6 and 7 will require a dozer of at least D10 or similar for effective production. Excavation productivity within Unit 5, 6 and 7 will be slow and possibly higher than normal 'wear and tear' of excavation attachments can be expected, and this should be allowed for.

Alternatively, hydraulic rock breakers, rock saws and/ or rotary grinders could be used, though productivity would be lower and equipment wear increases, and this should be allowed for. Such equipment would also be required for detailed excavation, such as footings or service trenches, and for trimming of faces. Final trimming of faces may also be completed using a grinder attachment rather than a rock breaker in order to assist in limiting vibrations. The use of rotary grinders generally generates dust and this may be supressed by spraying with water.

Excavation using rock hammers should commence away from the adjoining structures and the transmitted vibrations monitored to assess how close the hammer can operate to the adjoining structures while maintaining transmitted vibrations within acceptable limits. Alternatively, vibration monitors may be set up on the adjoining buildings to monitor vibrations at all times during rock excavation. Such monitors should be attached to base of external walls of existing building and/ or infrastructure in closest proximity to the excavation and have flashing lights to warn the operator when acceptable limits have been reached. Reference should be made to **Appendix C** for acceptable limits of transmitted vibrations.

Where the transmitted vibrations are excessive, alternate excavation equipment would need to be used, such as a small rock hammer, ripping hooks, rotary grinders or rock saws. If an alternate rock hammer is to be used, the transmitted vibrations from that hammer should be measured to determine how close each individual hammer can operate to the adjoining buildings. To assist in reducing vibrations and over-break of the shale, we recommend that initial saw cuts through the bedrock may be provided using rock saw attachments fitted to the excavator. However, the effectiveness of such approach must be confirmed by the results of vibration monitoring

Groundwater seepage monitoring should be carried out during bulk excavation prior to finalising the design of a pump out facility. Outlets into the stormwater system will require Council approval.

4.3.2 Vibration Considerations

Utmost care must be taken when using excavators with hydraulic impact hammer attachments for any rock excavation, as there will likely be direct transmission of ground vibrations to nearby structures and infrastructures. Guideline levels of vibration velocity for evaluating the effects of vibration in structures are given in the attached Vibration Limits in **Appendix C**. We recommend that the acceptable limit for transmitted vibration be set at quite a low peak particle velocity of 5mm/s for frequencies of less than 10Hz at foundation level. To fall within these limits, we recommend that the size of rock hammers initially used during the trial not exceed medium sized rock hammer, say 900kg. If it is found that transmitted vibrations are unacceptable, then it would be necessary to change to a smaller excavator with a smaller rock hammer, or to a rotary grinder, rock saws, or jackhammers.

If rock hammers are to be used, we recommend that the initial excavation in rock should preferably be commenced away from likely critical areas and vibration monitoring be carried out. The monitoring program should be confirmed when details of the contractor's excavation methods and sequence are known.

Vibrations induced by excavations can be reduced by alternative methods such as the following:

- Commence the rock excavation away from potentially sensitive areas;
- Keep rock hammer orientation towards the face and enlarge excavation by breaking small wedges off faces;
- Operate hammers in short bursts only;
- Use smaller equipment (resulting in low productivity); and
- Use line sawing, especially along boundaries, to assist in breaking and trimming.

Furthermore, we recommend that only excavation contractors with appropriate insurances and experience on similar projects be used. The contractor should also be provided with a copy of this report to make his own judgement on the most appropriate excavation equipment.

4.3.3 Excavation Monitoring

Consideration should be made to the impact of the proposed development upon neighbouring structures, roadways and services, particularly the Sydney Trains and RMS assets to the north and south, respectively. Basement excavation retention systems should be designed so as to limit lateral deflections.

Contractors should also consider the following limits associated with carrying out excavation and construction activities:

- Limit lateral deflection of temporary or permanent retaining structures;
- Limit vertical settlements of ground surface at common property boundaries and services easement.
- Limit Peak Particle Velocities (PPV) from vibrations, caused by construction equipment or excavation, experienced by any nearby structures and services.

Monitoring of deflections of retaining structures and surface settlements should be carried out by a registered surveyor at agreed points along the excavation boundaries and along existing building foundations/ services/ pavements and other structures located within or near the zone of influence of the excavation. Owners of existing services adjacent to the site should be consulted to assess appropriate deflection limits for their infrastructure. Measurements should be taken:

- Prior to commencement of excavations;
- Immediately after installation of any temporary or permanent retaining structures;
- Immediately after the excavation has reached a depth of 1.5 m, and each 1.5 m depth increment thereafter;
- Immediately after the excavation has reached bulk excavation level; and
- Immediately after backfilling behind retaining structures.

4.4 **GROUNDWATER CONSIDERATIONS**

Groundwater within the wells was measured at the levels summarised in Table 4-2 below.

Table 4-2Summary of Groundwater Levels

Site	Range of Groundwater RLs Measured m AHD)	Assumed BEL RL (m AHD)
1	36.1	30.95
2	2 35.9 to 41.7	B2: 33.4
2		B3: 30.4
3	29.1 to 34.0	22.8

The groundwater levels in the wells installed at the three sites were measured to be well above the proposed bulk excavation levels.

Experience shows that due to the expected low permeability of the residual clayey soil and shale bedrock profile, groundwater inflows into the excavation should not have an adverse impact on the proposed development or on the neighbouring sites. However, we expect that some groundwater inflows into the excavation along the soil/rock interface and through any defects within the shale bedrock (such as jointing, and bending planes, etc.) particularly following a period of heavy rain. The initial flows into the excavation may be locally high, but would be expected to decrease considerably with time as the bedding seams/joints are drained. We recommend that monitoring of seepage be implemented during the excavation works to confirm the capacity of the drainage system.

We expect that any seepage that does occur will be able to be controlled by a conventional sump and pump system. We recommend that a sump-and-pump system be used both during construction and for permanent groundwater control below the basement floor slab.

In the long term, drainage should be provided behind all basement retaining walls, around the perimeter of the basement and below the basement slab. The completed excavation should be inspected by the hydraulic engineer to confirm that adequate drainage has been allowed for. Drainage should be connected to the sumpand-pump system and discharging into the stormwater system. The permanent groundwater control system should take into account any possible soluble substances in the groundwater which may dictate whether or not groundwater can be pumped into the stormwater system.

The design of drainage and pump systems should take the above issues into account along with careful ongoing inspections and maintenance programs. El recommends further detailed groundwater monitoring with pump out tests be carried out within the installed monitoring wells for monitoring of groundwater levels and estimation of seepage volumes.

4.5 EXCAVATION RETENTION

4.5.1 Support Systems

From a geotechnical perspective, it is critical to maintain the stability of the adjacent structures and infrastructures during demolition and excavation works. Excavations and retention systems will need to take into consideration the stability of adjoining structures so as not to have any adverse effects on the buildings and structures adjoining the excavation.

The proposed basement footprint of **Sites 1, 2, and 3** are proposed to extend close to the site boundaries. Based on this and the encountered subsurface conditions, temporary batter slopes of the soil and weathered rock profile will not be feasible and are not recommended for this site. Unsupported vertical cuts are not recommended for this site as these carry the risk of potential slump failure especially after a period of wet weather. Slumping of the material may result in injury to personnel and/or damage to nearby structures/infrastructures and equipment.

A suitable full-depth retention system, such as anchored or propped soldier pile walls, with concrete infill panels, installed to below bulk excavation levels is recommended and will be required for the support of the entire excavation. Anchors and/or props and shotcrete must be installed progressively as excavation proceeds. The use of a more closely spaced shoring system (such as semi-contiguous or contiguous) is preferred adjacent to neighbouring buildings/infrastructures, so as to reduce the lateral movements and the risk of potential damage. The piles must be installed to below BEL and socketed into Unit 5 shale or better with a nominal socket of 1.0m. The retention system must be installed prior to excavation commencement.

The proposed development consists of three separate buildings with two to four-level basements. Anchors may not be suitable for additional lateral restraint due to the close proximity of the proposed adjoining basements, and therefore internal props or bracing may be required.

If the walls of the existing basements (Site 1 and 3) are to be retained, underpinning and/or additional lateral support (such as bracing) or strengthening may be required and these should be designed by the structural engineer.

Bored piers may be used for all three sites. However, relatively large capacity piling rigs (e.g. Soilmec SR-40 or larger) will be required for drilling through the shale bedrock. We recommend further advice be sought from piling contractors who should be provided with a copy of this report. Working platforms may also be required.

4.5.2 Retaining Walls Design Parameters

The following parameters may be used for static design of temporary and permanent retaining walls at the subject site:

- For progressively anchored or propped walls where minor movements can be tolerated (provided there are no buried movement sensitive services), we recommend the use of a trapezoidal earth pressure distribution of 6H kPa for soil and shale bedrock, where H is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system;
- For progressively anchored or propped walls which support areas which are highly sensitive to movement (such as areas where movement sensitive structures or infrastructures or buried services are located in close

proximity), we recommend the use of a trapezoidal earth pressure distribution of 9H kPa for soil and shale bedrock, where 'H' is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system;

- Full hydrostatic pressures must be taken into consideration in the design of retaining walls unless measures
 are taken to provide complete and permanent drainage behind the walls. Strip drains protected with a nonwoven geotextile fabric should be used behind the shotcrete infill panels for soldier pile walls or inserted
 between gaps in contiguous piles. Alternatively, for the contiguous pile walls, weepholes comprising 20mm
 diameter PVC pipes grouted into holes or gaps between adjacent piles at 1.2m centres (horizontal and
 vertical), may be used. The embedded end of the pipes must, however, be wrapped with a non-woven
 geotextile fabric (such as Bidim A34) to act as a filter against subsoil erosion;
- All surcharge loading affecting the walls (including from construction equipment, construction loads, adjacent high level footings, etc.) should be adopted in the retaining wall design as an additional surcharge using an 'at rest' earth pressure coefficient, k_o, of 0.59;
- For piles embedded into Unit 5 or better, the allowable lateral toe resistance value outlined in **Table 4-3** below may be adopted;
- If temporary anchors extend beyond the site boundaries, then permission from the neighbouring developments would need to be obtained prior to installation. Also, the presence of neighbouring basements (if any) or services and their levels must be confirmed prior to finalising anchor design;
- Anchors should have their bond length within Unit 5 or better. For the design of anchors bonded into Unit 4 or better, the allowable bond stress values outlined in **Table 4-3** below may be used, subject to the following conditions:
 - 1. Anchor bond lengths of at least 3m behind the 'active' zone of the excavation (taken as a 45 degree zone above the base of the excavation) is provided;
 - 2. Overall stability, including anchor group interaction, is satisfied;
 - 3. All anchors should be proof loaded to at least 1.3 times the design working load before locked off at working load. Such proof loading is to be witnessed by and engineer independent of the anchoring contractor. We recommend that only experienced contractors be considered for anchor installation with appropriate insurances;
 - 4. Permanent anchors must have appropriate corrosion provisions for longevity.

Material ¹		Unit 1 Fill	Unit 2 Residual Soil	Unit 3 Class V Shale	Unit 4 Class IV Shale	Unit 5 Class III Shale	Unit 6 Class II Shale	Unit 7 Class I Shale				
	op of Unit AHD) ²	See Table 3-2										
Bulk Unit Weight (kN/m ³)		18	18	22	23	24	24	24				
Earth	At rest, K _o ³	0.59	0.58	0.53	0.50	0.36	0.29	0.29				
Pressure	Active, Ka ³	0.42	0.41	0.36	0.33	0.22	0.17	0.17				
Coefficients	Passive, K _p ³		-	2.77	3.00	4.60	5.83	5.83				
Allowable Bearing Pressure (kPa) ⁵		-	-	700	1000	1500	3500	8000 ⁶				
Allowable Shaft	in Compression	-	-	70	100	150	350	800 ⁶				
Adhesion (kPa) ^{4, 5}	in Uplift	-	-	35	50	75	175	400 6				
Toe Resistance (kPa)		-	-	-	-	200	350	400 ⁶				
Bond Stress (kPa)		-	-	-	-	200	300	350 ⁶				
Earthquake S Classification						s of Class Ce.(Shallow So r Sydney is 0.08.	oil)					

Table 4-3 Geotechnical Design Parameters

Notes:

1 More detailed descriptions of subsurface conditions are available on the borehole logs presented in **Appendix A**.

2 Approximate levels to top of unit at the time of our investigation. Levels may vary across the site.

3 Earth pressures are provided on the assumption that the ground behind the retaining walls is horizontal

4 Allowable Shaft Adhesion values given assume there is intimate contact between the pile and foundation material and should achieve a clean socket roughness category R2 or better. Design engineer to check both 'piston pull-out' and 'cone liftout' mechanics in accordance with AS4678-2002 Earth Retaining Structures.

5 To adopt these parameters we have assumed that:

- Piles have a nominal socket of at least two pile diameters or 1 m, whichever is greater, into the relevant founding material;
- There is intimate contact between the pile and foundation material (a clean socket roughness category of R2 or better);
- Potential soil and groundwater aggressivity will be considered in the design of piles;

The pile should be drilled in the presence of a suitably qualified Geotechnical Engineer prior to pile construction to verify that ground conditions meet design assumptions. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremie method should be used; The bases of all pile excavations are cleaned of loose and softened material and water is pumped out prior to placement of concrete;

The concrete is poured on the same day as drilling, inspection and cleaning.

6 Subject to the drilling of cored boreholes at max 10m grid spacing or cored bores for 50% of footings and spoon testing of remainder.

For the use of any design parameters for Units 5, 6 and 7 in Site 1 and 3, EI recommends the drilling of:

- Site 1: at least four additional cored boreholes; and
- Site 3: at least one additional cored borehole at the western corner of the site.

Furthermore, any existing buried services which run below the site will require diversion prior to the commencement of excavation or alternatively be temporarily supported during excavation, subject to permission or other instructions from the relevant service authorities. Enquiries should also be made for further information and details, such as invert levels, on the buried services.

Sydney Trains and RMS may require further assessment on the potential impact of the proposed development on their asset using computational analysis. If commissioned, we can carry out such works.

4.6 FOUNDATIONS

Following bulk excavations, the following materials are expected to be exposed at the base of each site:

- Site 1: Unit 3 Class V Shale at the assumed BEL RL 30.95m AHD;
- Site 2: B2: Unit 3 to 5 Class V to IIII Shale at the assumed B2 BEL RL 33.4m AHD;

B3: Unit 5 to 6 – Class III to II Shale at the assumed B3 BEL RL 30.4m AHD;

• Site 3: Unit 4 to 7 – Class IV to I Shale at the assumed BEL RL 22.8m AHD;

It is recommended that all footings for the building and retaining walls be founded within shale bedrock of similar strength to provide uniform support and reduce the potential for differential settlements. The footing systems will require careful consideration due to the variable rock conditions and the expected moderate to high column loads

Footings founded within each Unit may be designed for the following allowable bearing capacities outlined below:

- Unit 3 Class V Shale: 700kPa
- Unit 4 Class IV Shale: 1000kPa
- Unit 5 Class III Shale: 1500kPa
- Unit 6 Class II Shale: 3500kPa
- Unit 7 Class I Shale: 8000kPa.

Within the basement area, pad/strip footings may be used. Bored piers may be required to found in shale of better quality for certain bearing pressures.

Footings founded at or near the crest of an excavation should be founded below the zone of influence of the lower basement retaining walls, which may be taken as founding below a line drawn at 1 Vertical to 1 Horizontal from the base of the retaining walls. Piles may be required. Specific geotechnical advice should be obtained for such footings taken into consideration the basement excavation and the quality of shale at the particular footing location.

El recommends the drilling of at least four additional cored boreholes within **Site 1**, and one additional cored borehole at the western corner of **Site 3**, once access is possible. The purpose of these boreholes is to assess the subsurface conditions and depth to quality bedrock across the site.

The use of the high allowable bearing pressure of 8000kPa must be confirmed by the drilling of additional deep cored boreholes across the site at maximum 10m grid spacing **or** by cored bores for 50% of footings and spoon testing of the remainder. The purpose of these works is to confirm the presence and depth of this high quality shale across the site.

Geotechnical inspections of foundations are recommended to determine that the required socket lengths have been achieved and founding material has been reached and determine any variations that may occur between the boreholes and inspected locations.

4.7 LOWEST BASEMENT FLOOR SLAB

Following bulk excavations for the proposed basements, shale of variable strength is expected to be exposed at BEL. The lowest basement slab should be provided with a granular sub-base layer to provide a separation between the rock and the floor slab. We recommend that the sub-base layer comprise at least 100mm thickness of crushed rock to RMS QA specification 3051 (2013) unbound base material (or equivalent good quality and durable fine crushed rock) compacted to at least 100% of Standard Maximum Dry Density (SMDD). Concrete pavements should be designed with an effective shear transmission at all joints by way of either dowelled or keyed joints. The completed excavation should be inspected by the hydraulic engineer to confirm the extent of the drainage required

In addition, a system of sub-soil drains comprising a durable single sized aggregate with perforated drains/pipes leading to sumps should be provided. The basement floor slab should be isolated from columns.

Permission may need to be obtained from the NSW Department of Primary Industries (DPI) and possibly Council for any permanent discharge of seepage into the drainage system. Given the subsurface conditions, we expect that seepage volumes would be low and within the DPI limits. However, if permission for discharge is not obtained, the basement may need to be designed as a tanked basement.

5 RECOMMENDATIONS FOR FURTHER GEOTECHNICAL SERVICES

Below is a summary of the previously recommended additional work that needs to be carried out:

- Drilling of at least four additional cored boreholes within **Site 1**, and one additional cored borehole at the western corner of **Site 3**, once access is possible.
- Should higher bearing pressures be required (in the order of 8000kPa), cored boreholes at 10m grid spacing across the site **or** by cored boreholes for 50% of footings and spoon testing of the remainder;
- Pump-out tests within the installed wells;
- Dilapidation surveys;
- Design of working platforms (if required) for construction plant by an experienced and qualified geotechnical engineer;
- Computational analysis may be required to assess the potential impact of the proposed development on the adjacent Sydney Trains corridor and RMS asset road.
- Classification of all excavated material transported off site;
- Witnessing installation and proof-testing of anchors (if required).
- Geotechnical inspections of foundations;
- Spoon testing of footings, if required; and
- Ongoing monitoring of groundwater inflows into the bulk excavation;

We recommend that a meeting be held after initial structural design has been completed to confirm that our recommendations have been correctly interpreted. We also recommend a meeting at the commencement of construction to discuss the primary geotechnical issues and inspection requirements.

6 STATEMENT OF LIMITATIONS

This report has been prepared for the exclusive use of DeiCorp Projects Petersham Pty Ltd who is the only intended beneficiary of El's work. The scope of the investigation carried out for the purpose of this report is limited to those agreed with DeiCorp Projects Petersham Pty Ltd

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the geotechnical industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments. Where the recommendations are not implemented in full, El accept no responsibility whatsoever for the performance of the structure.

The conclusions presented in this report are based on a limited investigation of conditions, with specific sampling and test locations chosen to be as representative as possible under the given circumstances.

In the instance where the proposed developments have changed, this report must be reviewed as the recommendations may not be applicable.

El's professional opinions are reasonable and based on its professional judgment, experience, training and results from analytical data. El may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified by El.

El's professional opinions contained in this document are subject to modification if additional information is obtained through further investigation, observations, or validation testing and analysis during construction. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

We draw your attention to the document "Important Information", which is included in **Appendix D** of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by EI, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Should you have any queries regarding this report, please do not hesitate to contact EI.

7 **REFERENCES**

AS1170.4:2007, Structural Design Actions, Part 4: Earthquake Actions in Australia, Standards Australia.

AS1726:1993, Geotechnical Site Investigations, Standards Australia.

AS2159:2009, Piling – Design and Installation, Standards Australia.

AS3600:2009, Concrete Structures, Standards Australia

Excavation Work Code of Practice - July 2015 - WorkCover NSW,

NSW Department of Finance and Service, Spatial Information Viewer, maps.six.nsw.gov.au.

NSW Department of Mineral Resources (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.

8 ABBREVIATIONS

A-C	Asphaltic-Concrete
AHD	Australian Height Datum
AS	Australian Standard
BEL	Bulk Excavation Level
BEGL	Below Existing Ground Level
BH	Borehole
DBYD	Dial Before You Dig
DP	Deposited Plan
DSI	Detailed Site Investigation
EI	Environmental Investigations Australia Pty Ltd
FFL	Finish Floor Level
GI	Geotechnical Investigation
NATA	National Association of Testing Authorities, Australia
PVC	Polyvinyl Chloride
RL	Reduced Level
RMS	Roads and Maritime Services
NATA	National Association of Testing Authorities, Australia
RL	Reduced Level
SMDD	Standard Maximum Dry Density
SPT	Standard Penetration Testing
T-C	Tungsten-Carbide
UCS	Unconfined Compressive Strength

Page | 21

Geotechnical Investigation 3-7 Regent Street, 13-17 Regent Street & 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 GA, 24 May 2016

FIGURES

Contamination Remediation Geotechnical
Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088

Approved:	JC	
Date:	24-5-16	
Approx Scale:	N.T.S.	

Deicorp Projects Petersham Pty Ltd	Figure:
Geotechnical Investigation	1
7 & 13-17 Regent Street and 287-309 Trafalgar Street,	
Petersham, NSW	
Site Locality Plan	Project: E2291

13 GA

LEGEND

- Approximate Geotechnical Borehole Location
- Approximate Borehole/Monitoring Well Location
- Approximate Environmental Borehole Location
- Approximate Site Boundary
 Proposed Site 1 Basement Outline
 Proposed Site 2 Upper Basement Outline
 Proposed Site 2 Upper Basement Outline
 Proposed Site 3 Basement Outline

Drawn:	SK	l
Approved:	JC	Deta 3-7 & 1
Date:	24/5/16	287-309 Traf
Approx Scale:	1:800 @ A3 or as shown	Boi

Deicorp Pty Ltd ailed Site Investigation 13-17 Regent Street and falgar Street, Petersham, NSW Figure:

Project: E22913 GA

2

prehole Location Plan

Geotechnical Investigation 3-7 Regent Street, 13-17 Regent Street & 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 GA, 24 May 2016

APPENDIX A

BOREHOLE LOGS AND EXPLANATORY NOTES

BOREHOLE: BH1M

Project Proposed Mixed Use Development East Location Regent & Trafalgar Street, Petersham, NSW North Position Site 3 Job No. E22913

Client Deicorp Projects Petersham Pty Ltd

329418.8 m 6247996.4 m MGA94 Zone 56 Surface RL Contractor Drill Rig Hanjin DB8

Inclination

33.00 m AHD Rockwell Drilling Pty Ltd -90°

1 OF 3 Sheet Date Started 4/3/16 Date Completed 4/3/16 Date: 4/3/16 Logged JZ Checked SK Date: 24/5/16

		Dril	ling		Sampling				Field Material Desc				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
Ы	Н		0 —	0.14				- 1	CONCRETE; 140mm thick.	-	-	CONCRETE HARDSTAND	_
			-	32.86 0.85	SPT 0.50-0.95 m 2,4,5 N=9		\bigotimes	- > >	FILL: Silty CLAY; low to medium plasticity, dark grey, with fine to medium gravel and fine grained sand.	-	-	FILL	
		29/04/16	1	32.15 <u>1.50</u> 31.50	BH1M_0.585 BH1M_0.5-0.6 ES 0.50-0.60 m BH1M_0.7-0.8 ES 0.70-0.80 m BH1M_0.85-0.95 PP =100-150 kPa			CH	Silty CLAY; high plasticity, grey mottled red-brown, with ironstone fragments.	-	St	RESIDUAL SOIL	
			2		SPT 1.50-1.95 m 3,7,12 N=19 BH1M_1.5-1.95 PP =300-400 kPa			4 	Troin Lon, groy moulou yonow brown.	M (>PL	VSt		
	E		- - 3—	<u>3.00</u> 30.00	SPT 3.00-3.45 m				SHALE: gray motified grapage brown, ovtromoly law strongth			WEATHERED ROCK	
			-		8,16,16 N=32 BH1M_3.0-3.45				SHALE; grey mottled orange brown, extremely low strength, extremely weathered.				
AD/T			4										
AI		- 5		SPT 4.50-4.60 m 10/100mm HB N=SPT BH1M_4.5-4.6									
			- - 6							-	-		
	F-H		-										
			7										
			- 8 -	8.50	BH1M_8.0-8.5 D 8.00-8.50 m								
_			9	8.50					Continued as Cored Borehole				
			-										
			10 —	<u> </u>	This boreho	le log	l I shoul	ld be	read in conjunction with Environmental Investigations Austra	lia's a	accon	I npanying standard notes.	

		(BOREHOLE: E	3ŀ	-11	IN	Λ	
	Conta	IC	JU tion F	St	tion Geote	ia	Proje Locat Positi Job N Clien	ion Regent & Trafalgar Street, Petersham, NSW on Site 3 lo. E22913	Y N S C	Contr Drill F	ce RI actor Rig		329418.8 m 6247996.4 m MGA94 Zone 56 33.00 m AHD Date Started Rockwell Drilling Pty Ltd Date Completed Hanjin DB8 Logged JZ	4/3 4/3 Da	ate:	6 6 4/:		
									ıl	nclin	ation		-90° Checked SK	Da	ate:	24	/5/	16
	Drilling Field Material Description												Defect Information	_				
METUOD		WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STF Is ₍	ERRI RENG 50) MF	STH Pa	& Additional Observations		D SF	/ER EFE PAC (mr	ECT SINC n)	G
EA LB 1.03 GLB Log IS AU CORED BOREHOLE 3 222913 BOREHOLE LOGS GPJ <-OnewingFile>> 24/05/2016 18:11 8:30.004 Darget Lab and in Stu Tod - DGD Lik: EIA 1.03 2014-07-05 Pi; EIA 1.03 2014-07-05 A; A A A A A A A A A A A A A A A A A A		100% RETURN	100	59 (12)		8.50 24.50		Continuation from non-cored borehole SHALE; bedding dipping 0-5°, <1-3mm thick, dark grey with grey laminations.	sw	nmer	• •		8.52: BP 0° PR SM CN 8.54: BP 0° PR SM CN 8.54: BP 0° PR SM CN 8.55: BP 0° PR SM CN 8.57: BP 0° PR SM CN 8.57: BP 0° PR SM CN 8.62: BP 0° PR SM CN 8.63: BP 0° PR SM CN 8.64: BP 0° PR SM CN 8.65: BP 0° PR SM CN					
EIA LIB															_			

	Contar	minatio		St	ion Geote	ia echnical	Proje Loca Posi Job Clier	ation Regent & Trafalgar Street, Petersham, NSW tion Site 3 No. E22913	/ N S C	ast Iorth Surfac Contra Drill R nclina	ig	BOREE 329418.8 m 6247996.4 m MGA94 Zone 56 33.00 m AHD Rockwell Drilling Pty Ltd Hanjin DB8 -90°	Sheet Date Started Date Completed Logged JZ Checked SK	BH1M 3 OF 3 4/3/16 4/3/16 Date: 4/3/16 Date: 24/5/16
	Drilling Field Material Description											Defect	Information	
METHOD		WALEK	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STR Is ₍₅	ERRED ENGTH MPa	DEFECT DESCRIP & Additional Observ		AVERAGE DEFECT SPACING (mm)
IS AU CORED BOREHOLE 3 E221313 BOREHOLE LOGS GPJ <-OnewargFile>> 24/05/2016 18:11 8:30.004 DatgeLab and in Stu Tod - DGD Lib: EIA 1:03 2014-07-05 Pr; EIA 1:03 Pr; EI		100% KEIUKN	100	59 (12)	10 — 	14.17 14.17 18.83 		SHALE; bedding dipping 0-5°, <1-3mm thick, dark	M S FR			8.91-8.92: SZ 8.96: JT UN SM CN 9.07: BP 0° PR SM CN 9.08: BP 0° PR SM CN 9.10: BP 0° PR SM CN 9.17: BP 0° PR SM CN 9.30: BP 0° PR SM CN 9.30: BP 0° PR SM CN 9.36: BP 0° PR SM CN 9.36: BP 0° PR SM CN 9.36: BP 0° PR SM CN 9.45: BP 0° PR SM CN 9.54: BP 0° PR SM CN 9.57: BP 0° PR SM CN 9.77: BP 0° PR SM CN 9.88: BP 0° PR SM CN 9.88: BP 0° PR SM CN 9.98: BP 0° PR SM CN 10.98: BP 0° PR SM CN 10.33: BP 0° PR SM CN 10.33: BP 0° PR SM CN 10.33: BP 0° PR SM CN 10.34: BP 0° PR SM CN 10.35: DF 0° PR SM CN 10.47: 106° PR SM CN 10.47: 106° PR SM CN 11.05: BP 0° PR SM CN 11.05: BP 0° PR SM CN 11.25: JT 45° PR SM CN 11.240: BP 0° PR SM CN 11.25: JT 45° PR SM CN 11.240: BP 0° PR SM CN 11.25: JT 45° PR SM CN 11.240: BP 0° PR SM CN 11.25: JT 45° PR SM CN 11.240: BP 0° PR SM CN 11.25: JT 45° PR SM CN 11.240: BP 0° PR SM CN 11.25: JT 45° PR SM CN 11.240: BP 0° PR SM CN 11.25: JT 45° PR SM CN 11.25: JT 45° PR SM CN 11.240: BP 0° PR SM CN 11.25: JT 45° PR SM CN 11.25: JT 45° PR SM CN 11.26: JT 45° PR SM CN 12.20: JT 45° PR SM CN 12.20: JT 45° PR SM CN 13.20: JT 45° PR SM CN 14.02: JT 45° PR SM CN 14.02: JT 45° PR SM CN 15.20: JT 45° PR 5M CN 15.20: JT 45° PR 5M CN 15.20: JT 45° PR	N	
EIA LIB 1.03.GLB Log IS AU C					20 —	-	Th	is borehole log should be read in conjunction with En	viror		al Inves	tigations Australia's accompanying	g standard notes.	

CORE PHOTOGRAPH OF BOREHOLE: BH1M

Project: Location:	Proposed Mixed Use Development 3-7 Regent Street (Site 1), 13-17 Regent Street (Site 2)	East: North:	329418.8 m 6247996.4 m MGA94 Zone 56	Depth Range: Contractor:	8.50 m to 14.17 m Rockwell Drilling Services Pty Ltd
	& 287-309 Trafalgar Street (Site 3), Petersham, NSW	Surface RL:	33.00 m AHD	Drill Rig:	Hanjin DB8
Position:	Site 3	Inclination:	-90°	LOGGED: JZ	DATE: 4/5/16
Job No. :	E22913	Box:	1 & 2 of 2	CHECKED: SK	DATE: 24/5/16
Client:	DeiCorp Projects Petersham Pty Ltd	Hole Depth:	14.17 m		

BOREHOLE: BH2

Sheet

Project Location Position Job No. E22913

Proposed Mixed Use Development Regent & Trafalgar Street, Petersham, NSW Site 3

Client

Deicorp Projects Petersham Pty Ltd

329421.4 m North Surface RL Contractor Drill Rig Hanjin DB8

East

Inclination

6248018.4 m MGA94 Zone 56 32.70 m AHD Rockwell Drilling Pty Ltd -90°

1 OF 3 9/3/16 Date Started Date Completed 10/3/16 Logged JZ Date: 10/3/16 Checked SK Date: 24/5/16

		Dril	ling		Sampling	Field Material Description										
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS				
	ТН		0 —	32.65			\bigvee	- /	ASPHALT: 50mm thick.	ι 	↓ ↓∕	PAVEMENT				
			-	-	BH2_0.2-0.5 ES 0.20-0.50 m		\bigotimes	-	FILL: Gravelly SAND; fine to medium grained, dark grey/dark brown, gravel is fine to medium, sub-angular, with clay.	D		FILL				
			-	0.50 32.20 0.80	SPT 0.50-0.95 m 3,5,6		\bigotimes	-	FILL: Silty CLAY; low plasticity, dark grey mottled red, trace of	M (>PL	-					
			- 1 —	31.90	N=11 BH2_0.5-0.8 BH2_0.8-0.95			СН	Silty CLAY; high plasticity, grey mottled red-brown, with ironstone gravel, fine to medium, sub-rounded.			RESIDUAL SOIL				
	E		-		0.80 m PP =200-250 kPa BH2_1.2-1.5 ES		× ×			M (>PL	VSt					
			-	1.80	1.20-1.50 m SPT 1.50-1.95 m 4,6,15											
		ing	2	30.90	N=21 BH2_1.5-1.8 1.50 m			-	SHALE; dark brown/grey/red-brown, extremely low to very low strength, extremely to distinctly weathered.			WEATHERED ROCK				
		GWNE on completion of augering	-		PP =250-300 kPa BH2_1.8-1.95											
AD/T		letion o	-													
AL		i compl	3		SPT 3.00-3.45 m											
		/NE on	-		10,22,25 N=47 BH2 3.0-3.45											
		GV	-		DH2_3.0-3.43					-	-					
7-05	F		4													
.03 2014-0			-													
5 Prj: EIA 1			-		SPT 4.50-4.70 m 22,10/50mm HB											
2014-07-05			- 5 —		N=10/50mm BH2_4.5-4.7											
: EIA 1.03			-		BH2_5.0-5.5 D 5.00-5.50 m											
DGD LIE	+		-	5.50					Continued as Cored Borehole							
Situ Tool			6													
Lab and In			-													
04 Datgel			-	-												
107 8.30.0			- 7—	-												
05/2016 15			-													
File>> 24/			-													
< <drawing< td=""><td></td><td></td><td>8</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawing<>			8	1												
JGS.GPJ			-													
EHOLE L(-													
2913 BOR			- 9 —													
IOLE 3 E2			-													
U BOREH			-													
t Log IS A			- 10 —													
EA LIB 103 GLB Log IS AU BOREHOLE 3 E23913 BOREHOLE LOGS/GPJ <cd-awingfile>> 2405/2016 18/07 8,30.004 Dage Lab and in Shu Tool - DGD LID: ELA 1.03 2014-07-05 Pr; ELA 1.03 2014-07-05</cd-awingfile>			-		This boreho	le log	shoul	d be	read in conjunction with Environmental Investigations Austral	lia's a	accon	npanying standard notes.				
EIA LIL																

			10									BOF	REHOLE:	В	H2	2
	ei	6	nu	st	ral	ia	Proje Loca			ast orth		329421.4 m 6248018.4 m MGA94 Zone 56	Sheet	2 OF	3	
	Contar	ninati	ion R	emediat	tion Geote	chnical	Posit	ion Site 3	S	urfac	æ RL	32.70 m AHD	Date Started	9/3/10	6	
							Job I Clien			ontra rill R	actor ig	Rockwell Drilling Pty Ltd Hanjin DB8	Date Completed Logged JZ	10/3/ Date:		3/16
	Drilling Field Material Description											-90°	Checked SK	Date:	24/	5/16
┝				Drilli	ng			Field Material Description				Defect	Information			
001111			TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	ST H Is		ERRED ENGTH MPa	& Additional Obser		SI	VERAGE DEFECT SPACING (mm)	
F	2 5	>	-	Ľ.	0-				5					8 9	<u>2 8 9</u>	2 8
od - DGD Ubr. ElA 1.03 2014-07-05 Pry ElA 1.03 2014-07-05						5.50 27.20		Continuation from non-cored borehole								
DrawingFile>> 24/05/2016 18:11 8:30.004 Datgel Lab and In Situ To			89	6 (0) 7 - - - - - - - - - - - - - - - - - -	5.80 26.90 6 - 7 - 7			xw Dw	•		5.83-5.86: DS 30mm 5.87: BP 0 - 5° CU SM VNR 5.89: BP 0 - 5° CU SM VNR 5.91-6.03: DS Clay 120mm 6.03-6.91: DZ Clay 880mm 6.98-7.00: DZ 20mm 7.00-7.06: JT 45° PR SM VNR 7.03: BP PR SM VNR 7.06: BP PR SM VNR 7.13: BP PR SM VNR 7.13: BP PR SM VNR 7.13: BP PR SM VNR 7.17-7.21: JT 45° PR SM VNR					
EA LIB 103.0.18 Log IS AU CORED BOREHOLE 3 E22913 BOREHOLE LOGS GP1 <			100	27 (8) 22 (7)	8	- <u>7.86</u> 24.84		grey with brown iron staining.	DW Sw		•	7.17-7.21: JT 45° PR SM VNR 7.19: BP 0° PR SM CN 7.30: BP 5° PR SM VNR 7.38-7.50: DS 120mm 7.70-7.85: CS 150mm 7.70-7.85: CS 150mm 8.08-8.08: CS 80mm 8.08-8.01: JT 90° PR SM CN 8.11-8.33: CZ 220mm 8.35-8.37: DS 20mm 8.39: BP 0° PR SM CN 8.43-8.41: BP 0° PR SM CN 8.43-8.41: BP 0° PR SM CN 8.50: BP 0° PR SM CN 8.51: BP 0° PR SM CN 8.51: BP 0° PR SM CN 8.61: BP 0° PR SM CN 8.61: BP 0° PR SM CN 8.67-8.68: DS 10mm 8.71: BP 0° PR SM CN 8.71: BP 0° PR SM CN				
EIA LIB 1.03.GLB					-		Thi	is borehole log should be read in conjunction with Env	viron	ment	tal Inves	tigations Australia's accompanyin	ng standard notes.			
e	eia		Remediat	ion Geote	a	Proje Loca Posit Job I Clier	tion Regent & Trafalgar Street, Petersham, NSV ion Site 3 No. E22913	V N S C	ast Jorth Surface RL Contractor Drill Rig Inclination	BOF 329421.4 m 6248018.4 m MGA94 Zone 56 32.70 m AHD Rockwell Drilling Pty Ltd Hanjin DB8 -90°	Sheet Date Started Date Completed Logged JZ Checked SK	BH2 3 OF 3 9/3/16 10/3/16 Date: 10/3/16 Date: 24/5/16				
--------	----------------	-----	------------	---------------------	-----------------------	--	---	---------------	--	--	--	--				
			Drilli	ng			Field Material Description			Defect	Information					
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	& Additional Observ		AVERAGE DEFECT SPACING (mm)				
	NA	100	22 (7)	10	<u>12.00</u> 20.70		SHALE; bedding dipping 0-5°, <1-2mm thick, dark grey with brown iron staining. SHALE; bedding dipping 0-5°, <1-2mm thick, dark grey.	DW SW	•	8 85: BP 0° PR SM CN 8.89: BP 0° PR SM CN 8.95: BP 0° PR SM CN 9.00-9.03: CS 30mm 9.12-9.16: IS Clay 40mm 9.21: BP 0° PR SM CN 9.25: BP 0° PR SM CN 9.33: BP 0° PR SM CN 9.33: BP 0° PR SM CN 9.34: BP 0° PR SM CN 9.53: 954: DS 10mm 9.53: 954: DS 10mm 9.53: 954: DS 10mm 9.63: 10.00: BPx10 0° PR SM CN 9.63: 10.00: BPx10 0° PR SM CN 10.53: BP 0° PR SM CN 10.55: BP 0° PR SM CN 10.51: BP 0° PR SM CN 10.61: BP 0° PR SM CN 10.65: BP 0° PR SM CN						
NMLC	90-100% RETURN	100	89 (74)						•	10.71: BP 0° PR SM CN 10.75-10.77: DS Clay 20mm 10.79-10.80: DS Clay 10mm 10.83-10.84: DS 10mm 10.89: BP 0° PR SM CN 10.93: BP 0° PR SM CN 10.95: BP 0° PR SM CN 10.97: BP 0° PR SM CN 11.01: BP 0° PR SM CN 11.01: BP 0° PR SM CN 11.10: T1.10: CS 70mm 11.15-11.16: DS 10mm 11.15-11.16: DS 10mm 11.12: BP 0° PR SM CN 11.22: BP 0° PR SM CN 11.30: BP 0° PR SM CN 11.33: BP 0° PR SM CN 11.34: BP 0° PR SM CN 11.35: BP 0° PR SM CN 11.35: BP 0° PR SM CN 11.35: BP 0° PR SM CN						
					<u>15.53</u> 17.17		Hole Terminated at 15.53 m Backfilled with drilling spoil and concrete capped.			11.94-11.96; JT 80 - 90° ST SM Ch 12.06-12 18; JT 70 - 90° UN SM Ch 12.10: BP 0° PR SM CN 12.21: BP 0° PR SM CN 12.32: BP 0° PR SM CN 12.41: BP 0° PR SM CN 12.43: BP 0° PR SM CN 12.68: BP 0° PR SM CN 12.91: BP 0° PR SM CN 13.26: BP 0° PR SM CN 13.36: BP 0° PR SM CN 13.68: BP 0° PR SM CN 13.68: BP 0° PR SM CN 13.71-13.75; JT 45° UN SM CN 13.84: BP 0° PR SM CN 13.88: BP 0° PR SM CN 14.01: BP 0° PR SM CN 14.01: BP 0° PR SM CN 14.40: BP 0° PR SM CN 14.46: BP 0° PR SM CN 14.48: BP 0° PR SM CN 15.17: BP 0° PR SM CN 15.26: BP 0° PR SM CN 15.26: BP 0° PR SM CN 15.38: BP 0° PR SM CN 15.38: BP 0° PR SM CN						
0				- - - 20 —		Th	is borehole log should be read in conjunction with Er	viror	imental Inves	stigations Australia's accompanyin	g standard notes.					

eiaust	ralia					COR	e phot	OGRAI	PH OF BORE	HOLE: BH2
Project: Location: Position: Job No. : Client:	3-7 Regent St & 287-309 Tra Site 3 E22913	ed Use Development reet (Site 1), 13-17 Regen afalgar Street (Site 3), Pet ects Petersham Pty Ltd	nt Street (Site 2) No ersham, NSW Si In Bo	orth: urface RL: clination: ox:	329421.4 m 6248018.4 m MGA94 32.70 m AHD -90° 1, 2 & 3 of 3 15.53 m	Zone 56	C D L(epth Range: ontractor: rill Rig: DGGED: JZ HECKED: SK	5.50 m to 15.53 m Rockwell Drilling Service Hanjin DB8 DATE: 10/3/16 DATE: 24/5/16	es Pty Ltd
			5 0 2 9 2 0 4 5 5 7 8 0 001 9 8 4	10 11 13 13 5 6 7 8 9 301 2 3 4 1	14 15 10 17 18 19 5 6 7 8 9 401 2 3 4 5 6 7 8 9	20 21 22 23 23 501 2 3 4 5 6 7 8 9 601 3	25 26 27 28 234567897012	29 30 31 32 3 4 5 6 7 8 9 801 2	33 34 35 873 37 38 39 3 4 5 6 7 8 9 901 2 3 4 5 6 7 8 9 100	
		E22913	PBTERSH,	AM	BH2	5.5m -			10/3/16	
		5			Start at 5.5 m	NO CORE	5.5 - 5.	8m		
		6					3		No the	
		1-2-112-			Ref. 1					
		8. 500-	AS MAN		HECEM		Lest a			
	B	1 ²						19714	PARA PARA	
		1 CALLER								
	1	2 11111-1								
		3				l'i dia dia dia dia dia dia dia dia dia di		V III		
	Į.		a alt for day about	In the public of		e se se se Se de Mil Indian				
	1.	5				End at 1	5.53 m		9 4 4 5 4 9 14 7 2 14 9	

BOREHOLE: BH3

Project Proposed Mixed Use Development East Location Regent & Trafalgar Street, Petersham, NSW North Position Site 3 Job No. E22913

Client Deicorp Projects Petersham Pty Ltd

329427.3 m 6247994.5 m MGA94 Zone 56 Surface RL Contractor Drill Rig Hanjin DB8 Inclination

34.50 m AHD Rockwell Drilling Pty Ltd -90°

1 OF 3 Sheet 9/3/16 Date Started Date Completed 9/3/16 Logged JZ Date: 9/3/16 Checked SK Date: 24/5/16

			Drill	ing		Sampling				Field Material Desc				-
METHOD	PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F	<u> </u>			0 —	34.45		X	\approx		ASPHALT: 50mm thick.	∧	1	PAVEMENT	5
				-		BH3_0.2-0.5 ES 0.20-0.50 m		\times	-	FILL: Gravelly SAND; fine to medium grained, dark grey/dark brown, gravel is fine to medium, sub-angular, with clay.	D		FILL	
				_	0.50 34.00	SPT 0.50-0.95 m 2,2,2	TŽ	$\stackrel{\times}{\times}$	-	FILL: Silty CLAY; low plasticity, dark grey mottled red, trace of				_
				-		N=4 BH3_0.5-0.95	\sim	\bigotimes		fine to medium gravel.		-		-
				1 —		BH3_0.8-1.0 ES 0.80-1.00 m		\bigotimes						-
				-	1.50			\times						_
	E		gering	_	33.00	SPT 1.50-1.95 m 3,4,6	×		СН	Silty CLAY; high plasticity, grey mottled brown.	м		RESIDUAL SOIL	-
			of auç	-		N=10 BH3_1.5-1.95	×	1.1,			(>PL			-
Ę	:		etion	2		1.50 m PP =200-300 kPa		×				St -		_
			dmo	_				 				VSt		-
			E on	-			F							-
			GWNE on completion of augering	3-	3.00	007.0.00 6 15		×						_
			-	-	31.50	SPT 3.00-3.45 m 17,18,29 N=47			-	SHALE; dark brown/grey, extremely low to very low strength, extremely to distinctly weathered.			WEATHERED ROCK	-
				-		BH3_3.0-3.45								-
	F	:		-							-	-		_
07-05				4 —		BH3 4.0-4.5 D		_						_
03 2014				-		4.00-4.50 m		_						-
Datgel Lab and In Situ Tool - DGD LIb: EIA 1.03 2014/07-05 Pri	+	+	-		4.50					Continued as Cored Borehole				-
4-07-05 F				_										-
1.03 201				5 —										-
LIb: EIA				-										_
- DGD				-										-
Situ Tool				6										_
and In 3				-										-
atgel Lat				-										-
8.30.004 D				-										_
				7—										
5/2016 1				_										-
>> 24/0				-										1
awingFild				-										-
ud≫ Lo				8 —										_
LOGS.G.				-]
EHOLE				-										-
913 BOR				_										-
E3 E22	9]
REHOLE				_										-
S AU BO				-]
03.0LB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ < <creaningfile> 24/05/2016 18:07</creaningfile>				10 —										_
t 1.03.GL						This borehole	log sl	houl	d be	read in conjunction with Environmental Investigations Austra	lia's a	accon	npanying standard notes.	
EIA LIE														

											BO	REHOLE:	В	H3	5
	eia	au	st	ral	ia	Proje			ast		329427.3 m	Object	0.05		
C	Contamina	tion R	emediat	tion Geote	echnical	Loca Posit	• • •		orth urfao	ce RL	6247994.5 m MGA94 Zone 56 34.50 m AHD	Sheet Date Started	2 OF 9/3/1		
						Job I				actor	Rockwell Drilling Pty Ltd	Date Completed Logged JZ	9/3/1 Date:		16
						Clien	t Deicorp Projects Petersham Pty Ltd		rill F Iclina	ation	Hanjin DB8 -90°	Checked SK	Date:		
			Drilli	ng			Field Material Description				Defec	t Information			
			۲)			₽		SING		ERRED RENGTH				/ERA	
METHOD	WATER	~	RQD (SCR)	DEPTH (metres)		GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	ls ₍	₅₀₎ MPa	& Additional Obser			PACI (mm	NG
ME	WA	TCR	RQ		DEPTH RL	Ŭ		WE	。。 ゴ イ -	1947 1977 - 0 1977 -	5		10	300	3000
				-											-
				-											-
				-	-										-
				1											
				-											-
				-											
				2—	-										-
				-											
				-	-										-
				3-											
				-											-
φ				-											
2014-07-0				-											-
EIA 1.03				4											
07-05 Prj:				-	4.50 30.00		Continuation from non-cored borehole SHALE; grey to dark grey with red-brown iron	xw			4.50-4.75: DS Clay 250mm			+	++
EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05			10	-	-		staining.	DW	,		4.75-4.90: CS 150mm				-
		100	18 (23)	5—				I			4.97-5.11: DS 5.15: JT 10° ST SM SN				
0 - DGD				-							5.29: JT 30° UN SM SN 5.32-5.50: DS Clay 180mm				f
In Situ Too				-							5.59-5.66: DS Clay 70mm 5.76: JT 45° PR SM VNR				-
Lab and		100	25	6—	-				•		5.80-5.86: DS Clay 5.90: JT 30° UN SM VNR 6.00-6.09: DS Clay 90mm				
04 Datge			(0)	-							6.14-6.35: CS 210mm 6.35-6.37: DS 20mm				
11 8.30.0				-	6.70				•		6.42-6.44: DS Clay 20mm 6.47: BP 0° UN SM VNR 6.49: JT 45° UN SM VNR				
/2016 18:1	r URN			- 7	27.70		CORELOSS: 100mm thick. SHALE; grey to dark grey with red-brown iron staining.	DW			6.50: BP 0° PR SM VNR 6.60-6.66: DS Clay 60mm				
NMLC	90-100% RETURN			-	7.37		staining.				6.80-6.89: JT 80° PR SM CN 6.89-6.92: DS Clay 30mm 6.95-6.97: DS Clay 20mm				
rawingFile	90-100	94	57 (49)	-	27.13		SHALE; bedding dipping 0-5°, <1mm thick, dark grey, with occasional brown ironstaining.			•	7.12: BP 0° PR SM VNR 7.16-7.22: CS 60mm 7.22-7.25: DS Clay 30mm				
GPJ <0			(,	- 8	-						7.30-7.34: CS 40mm 7.34-7.37: DS Clay 30mm 7.64-7.65: DS 10mm				-
LE LOGS				-							7.92: BP 0° PR SM CN 8.16: BP 0° PR SM CN				-
BOREHC				-				sw		+	8.34: BP 0° PR SM CN 8.42: BP 0° PR SM CN 8.46: BP 0° PR SM CN				
3 E22913				-							8.57: BP 0° PR SM CN 8.71: BP 0° PR SM CN				
SEHOLE		100	43	9 —							8.74: BP 0° PR SM CN 8.77: JT 30° UN SM CN 8.78: BP 0° PR SM CN				
DRED BO		100	43 (35)	-	-					-	8.85: BP 0° PR SM CN 8.90: BP 0° PR SM CN 8.94: BP 0° PR SM CN				
EA LIB 103 GLI LOG IS AU CORED BOREHOLE 3 E22913 BOREHOLE LOGS GPV <<0 awing File> 24/05/2016 18:11 8:30.004 Dagget uab and in Situ Tod - DGD LIb: NMLC				-							8.96: JT 45° PR SM CN 8.97-9.00: DS 30mm 9.12: BP 0° PR SM CN				
GLB Log				10 —											
LIB 1.03.						Th	s borehole log should be read in conjunction with En	viron	men	tai Inves	sugations Australia's accompanyir	ig standard notes.			
E															

				tion Ged		Proje Loca Posit Job N Clien	tion Regent & Trafalgar Street, Petersham, NS ion Site 3 No. E22913	W N S C D	ast orth urface RL ontractor rill Rig clination	BOF 329427.3 m 6247994.5 m MGA94 Zone 56 34.50 m AHD Rockwell Drilling Pty Ltd Hanjin DB8 -90°	Sheet Date Started Date Completed Logged JZ Checked SK	BH3 3 OF 3 9/3/16 9/3/16 Date: 9/3/16 Date: 24/5/16
	_	_	Drill	ing			Field Material Description			Defect	Information	-
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	DEFECT DESCRIF & Additional Observ		AVERAGE DEFECT SPACING (mm)
	90-100% RETURN	100	43 (35) 31 (15)	10 - 11 - 12 - 13 - 14 - 15 -	- <u>11.00</u> 23.50 - 23.50 - <u>13.00</u> 21.50 - <u>13.00</u> - <u>13.00</u> - <u>13.00</u> - <u>16.98</u>		SHALE; bedding dipping 0-5°, <1mm thick, dark grey, with occasional brown ironstaining.	SW XW		9.13: BP 0° PR SM CN 9.20: BP 0° PR SM CN 9.23: BP 0° PR SM CN 9.33: BP 0° PR SM CN 9.50: JT 45° UN SM CN 9.50: JT 45° UN SM CN 9.50: JT 45° UN SM CN 9.71: BP 0° PR SM CN 9.90-9.73: JT 70° PR SM CN 9.90-9.73: JT 70° PR SM CN 9.90-9.73: JT 70° PR SM CN 10.32: DS Clay 20mm 10.33-10.43: JT 60° UN SM VNR 10.32: DS Clay 20mm 10.39-10.43: JT 60° UN SM VNR 10.42: BP 5° PR SM CN 10.65: 10.59: JT 80° UN SM CN 10.65: 10.59: JT 80° UN SM CN 10.65: 10.70: JT 45° PR SM CN 10.67: 10.70: JT 45° PR SM CN 11.66: 11.09: JT 45° 60° CU SM C 11.14: BP 5° PR SM CN 11.32: 11.29: DS 60mm 11.32: BP 15° PR SM CN 11.33: 11.37: JT 45° CU SM CN 11.36: 11.38: DS 20mm 11.42: BP 0° PR SM CN 11.36: JT 0° 10° CU SM CN 11.61: JT 0° 10° CU SM CN 11.76: JT 0° 10° CU SM CN 11.72: BP 5° PR SM CN 12.63: 12.67: CS 40mm 12.23: BP 15° PR SM CN 12.63: 12.67: CS 40mm 12.73: JT 30° UN SM CN 12.63: 12.97: CS 140mm 13.00: BP 0° PR SM CN 12.63: 12.97: CS 140mm 13.34: BP 0° PR SM CN 13.13: BP 0° PR SM CN 13.13: BP 0° PR SM CN 13.43: BP 0° PR SM CN 13.44: BP 0° PR SM CN 13.45: JT 45° PR SM CN 13.45: JT 45° PR SM CN 13.46: BP 0° PR SM CN 13.46	N	
				19 -	-	Thi	is borehole log should be read in conjunction with E	nviron	mental Inve	stigations Australia's accompanyin	o standard notes.	

eiaust	tralia		С	ORE PHOTOGRAI	PH OF BOREHOLE: BH3
Project: Location: Position: Job No. : Client:	Proposed Mixed Use Development 3-7 Regent Street (Site 1), 13-17 Regent Street (Site 2) & 287-309 Trafalgar Street (Site 3), Petersham, NSW Refer to Figure 2 E22913 DeiCorp Projects Petersham Pty Ltd	Surface RL: Inclination: Box: Hole Depth:	329427.3 m 6247994.5 m MGA94 Zone 56 34.50 m AHD -90° 1 & 2 of 3 16.98 m	Depth Range: Contractor: Drill Rig: LOGGED: JZ CHECKED: SK	4.50 m to 13.00 m Rockwell Drilling Services Pty Ltd Hanjin DB8 DATE: 9/3/16 DATE: 24/5/16
	3 4 5 6 7 8 9 10 2 3 6 7 8 9 101 2 3 4 5 6 7 8 9 201 2 3 4 5 6	11 13 14 78930123456	+ 15 16 17 18 19 20 21 22 7 8 9 401 2 3 4 5 6 7 8 9 501 2 3 4 5 6	23 23 25 26 27 28 29 30 3 7 8 9 601 2 3 4 5 6 7 8 9 701 2 3 4 5 6 7 8	11 32 33 34 35 57 37 38 39 40 9 801 2 3 4 5 6 7 8 9 901 2 3 4 5 6 7 8 91001 2 3
	E22913 PETER	SHAM.	BH3	4.5m - 16.98 m	9/3/16
	4		Start at 4.50 m	THE JA	AND A
	5			ALL N	
	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		ALAY !!	ND CC 6.7-6.	DRE Santas Contractor
	BH3 8	l'ale der			
e	9		N		
1	10				
ĺ	12	R. W.			1983 ASC

BOREHOLE: BH4M

Sheet

Project Proposed Mixed Use Development East Location Regent & Trafalgar Street, Petersham, NSW North Position Site 3 Job No. E22913

Client Deicorp Projects Petersham Pty Ltd

329450.2 m 6248038.2 m MGA94 Zone 56 Surface RL Contractor Drill Rig Hanjin DB8 Inclination

35.50 m AHD Rockwell Drilling Pty Ltd -90°

1 OF 3 Date Started 7/3/16 Date Completed 7/3/16 Logged JZ Date: 7/3/16 Checked SK Date: 24/5/16

		Dril	ling		Sampling				Field Material Desc				
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL			CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F	<u> </u>		0				<u> </u> ₹ ∕ /	- /	ASPHALT: 50mm thick.	k - 7	, · ·	PAVEMENT	
			-	35.45	BH4M_0.2-0.4 ES		\bigotimes	-	FILL: Gravelly SAND; fine to medium grained, dark grey/dark			FILL	+-
			-	0.50	0.20-0.40 m		\bigotimes		brown, gravel is fine to medium, sub-angular, with clay.	Ĺ			-
			-	35.00	SPT 0.50-0.95 m 3,6,16		$\times\!\!\!\!\times$	-	FILL: Sandy CLAY; low to medium plasticity, dark brown/dark grey, sand is fine to medium grained, with fine to medium				-
			-		N=22 BH4M_0.5-0.95		\Leftrightarrow		gravel.	м	-		-
	Е		1—		BH4M_1.0-1.3 ES		\bowtie			(>PL			-
			-		1.00-1.30 m		\bigotimes						-
			-	1.50 34.00	SPT 1.50-1.95 m		$\frac{X}{X}$	СН	Silty CLAY; high plasticity, grey mottled orange-brown,			RESIDUAL SOIL	
			-	-	7,12,19 N=31		<u> </u>		grading into extremely weathered shale.	м	VSt -		
		ing	2—	-	BH4M_1.5-1.95 1.50 m		×			(<pl< td=""><td>н</td><td></td><td>-</td></pl<>	н		-
		nger	-	2.20 33.30	PP =300-400 kPa		<u>x </u>	-	SHALE: red-brown/grey, extremely low to very low strength			WEATHERED ROCK	+
		n of a	-	-					SHALE: red-brown/grey, extremely low to very low strength, extremely to distinctly weathered.				-
AD/T		letion	-										-
A		duloc	3-										
		GWNE on completion of augering	-		SPT 3.00-3.45 m 10,18,22								
		WNE	-	-	N=40 BH4M_3.0-3.45								
			-	-									-
	F		-	-						-	-		-
0-10-4-1			4 —										-
07 00-1			_										
i). ELM			-	4.50 31.00	SPT 4.50-4.72 m					1			-
100			-	-	18,25/70mm HB N>25								-
+ 07 0			5 —		BH4M_4.5-4.72 BH4M_5.0-5.5 D								-
			-	-	5.00-5.50 m								-
มลมัยเสมสาย พระเกายง - มอง 1 มม. ยาห 1 มจ. 2 ประการ			-	5.50					Continued as Cored Borehole				-
- 10			_										
			6 —	-									-
			-	-									-
			-	-									-
			-	-									-
8			7-										
			-										
4			-										-
			-										-
0			-										-
			8 —										-
			_										
			-										
			-										-
			9 —										-
			-										-
			-]									-
			-										
n 1			10 —										
					This borehole	e log	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	npanying standard notes.	
· • • • •													

		(BORE	HOLE: I	ЗH	4M	I
	Conta		JU tion R	St	ion Geote	ia chnical	Proje Loca Posit Job N Clien	tion Regent & Trafalgar Street, Petersham, NSW ion Site 3 No. E22913	N S C D	ast orth urface RI ontractor rill Rig	L	35.50 m AHD Rockwell Drilling Pty Ltd Hanjin DB8	Sheet Date Started Date Completed Logged JZ	Date	16 16 :: 7/3	
F				D ::::					lr	clination			Checked SK	Date	: 24/	5/16
┢				Drilli	ng			Field Material Description				Defect I	nformation			
	MEIHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERR STRENG Is ₍₅₀₎ MF	Pa Pa	DEFECT DESCRIP & Additional Observa		S	VERA DEFE SPACI (mm	CT NG I)
EA LIB 103 GLB Log IS AU CORED BOREHOLE 3 E22913 BOREHOLE LOGS GPJ < 4DrawingFile>> 24/05/2016 18:11 8:30.004 Datget Lab and in Stu Tod - DGD Lix: EA 1.03 2014-07-05 Pf; EIA 1.03 2014-07-05		ZETURN	100	46 (30)		<u>5.50</u> 30.00		grey with occasional brown iron staining.	w	•		5.50-5.58: JT 90° UN SM SN 5.58: BP 0° UN SM SN 5.60: BP 0° UN SM SN 5.60: BP 0° UN SM SN 5.62: BP 0° UN SM SN 5.62: BP 0° UN SM SN 5.68-5.77: DS 20mm thick 5.79-5.80: DS 10mm thick 5.79-5.80: DS 10mm thick 5.25-5.83: DS 10mm thick 5.96: BP 0° PR SM CN 6.00-6.30: CZ Clay 300mm 6.36-6.42: DS Clay 300mm 6.38-6.61: DS Clay 300mm 6.74: BP 5° PR SM CN 7.93: BP 0° PR SM CN 7.43: FP 0° PR SM CN				
Log IS AU CORED BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ <<	NMLC	90-100% RETURN	100	51 (30)		<u>8.05</u> 27.45		grey.	9W 9W	•		7.50-7.51: DS 10mm 7.55-7.57: DS 20mm 7.63-7.67: DS 40mm 7.75-70: DS 40mm 7.75-70: JT 70° PR SM CN 7.77: BP 0° PR SM CN 7.87: BP 0° PR SM CN 8.19: BP 5° PR SM CN 8.35: JT 30° PR SM CN 8.40: BP 0 - 5° CU SM CN 8.43: 8.45: DS 20mm 8.46-8.45: DS 20mm 8.46-8.65: DS 61mm 8.67-8.58: DS 10mm 8.77-8.86: CS 90mm 8.73-8.86: CS 90mm 8.93: BP 0° UN SM VNR 8.95: BP 5° PR SM CN 8.98: BP 5° PR SM CN				
EIA LIB 1.03.GLB							Thi	is borehole log should be read in conjunction with Envi	iron	mental In	ivest	tigations Australia's accompanying	standard notes.			

¢	eia		Remediat	ion Geoter	chnical	Proje Loca Posit Job I Clier	tion Regent & Trafalgar Street, Petersham, NSV ion Site 3 No. E22913 It Deicorp Projects Petersham Pty Ltd	1 V 8 0 1	East North Surface RL Contractor Drill Rig nclination	329450.2 m 6248038.2 m MGA94 Zone 56 35.50 m AHD Rockwell Drilling Pty Ltd Hanjin DB8 -90°	Sheet Date Started Date Completed Logged JZ Checked SK	BH4M 3 OF 3 7/3/16 7/3/16 Date: 7/3/16 Date: 24/5/16
			Drilli	ng			Field Material Description				Information	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	DEFECT DESCRIP & Additional Observ		AVERAGE DEFECT SPACING (mm)
		100	51 (30) 34 (6)	10 —			SHALE; bedding dipping 0-5°, <1-3mm thick, dark grey.	SW FR	-	9.15: BP 5° PR SM CN 9.22: JT 45° CM SM CN 9.25: BP 5° PR SM CN 9.45: BP 5° PR SM CN 9.55: BP 5° PR SM CN 9.71: BP 5° PR SM CN 9.74: JT 30° PR SM VNR 9.82: BP 0° PR SM CN 9.82: BP 0° PR SM CN 9.93-10.00: JT 80 - 90° CU SM CN 10.14: JT 10° PR SM CN 10.15: BP 5° PR SM CN 10.26: JT 10 - 20° ST SM CN 10.33: BP 10° PR SM CN 10.45: BP 10° PR SM CN 10.45: BP 10° PR SM CN 10.63-10.64: DS 10mm 10.78-10.82: JT 90° PR SM CN		
NMLC	90-100% RETURN	100	65 (58)		15.30				•	10.88: BP 5° PR SM CN 10.90: BP 5° PR SM CN 10.92: BP 5° PR SM CN 11.02-11.03: BP 40° PR SM CN 11.03: BP 40° PR SM CN 11.13: BP 5° PR SM CN 11.23: BP 5° PR SM CN 11.25: JT 10° PR SM CN 11.26: BP 5° PR SM CN 11.30: JT 10° PR SM CN 11.30: JT 10° PR SM CN 11.36: BP 5° PR SM CN 11.55: BP 5° PR SM CN 11.61: AB 90° PR SM CN 11.66: BP 5° PR SM CN 11.67: JT 0-80° CU SM CN 11.68: BP 5° PR SM CN 11.67: JT 0-80° CU SM CN 11.68: BP 5° PR SM CN 11.68: BP 5° PR SM CN 11.68: BP 5° PR SM CN 11.69: SP SM CN 11.69: SP SM CN 11.69: SP 5° PR SM CN 11.73: JT 45° PR SM CN 11.80: BP 5° PR SM CN 11.93: BP 5° PR SM CN 12.03: BP 5° PR SM CN 12.04: LF 12.16: DS Clay 10mm 12.26: BP 0° PR SM CN		
					20.20		Hole Terminated at 15.30 m Borehole converted to monitoring well.			12.37: BP 5° PR SM CN 12.45: BP 5° PR SM CN 12.50: BP 5° PR SM CN 12.50: BP 5° PR SM CN 12.66: BP 5° PR SM CN 12.88: BP 5° PR SM CN 12.89: 12.94: BP44 0 - 5° PR SM CI 13.07: JT 45° CU SM CN 13.07: JT 45° CU SM CN 13.13: BP 5° CU SM CN 13.17: BP 5° CU SM CN 13.77: BP 0° PR SM CN 13.77: BP 0° PR SM CN 13.78: BP 0° PR SM CN 13.93: BP 0° PR SM CN 13.96: BP 0° PR SM CN 14.41: BP 0° PR SM CN 14.41: BP 0° PR SM CN 14.47: BP 0° PR SM CN 14.46: JT 40° PR SM CN 14.63: JT 40° PR SM CN 14.63: BP 0° PR SM CN	N	
				20 —		Th	is borehole log should be read in conjunction with Er	nviroi	hmental Inve	stigations Australia's accompanying	g standard notes.	

BOREHOLE: BH5

Project	Propos
Location	Regent
Position	Site 3
Job No.	E22913

Client

Proposed Mixed Use Development & Trafalgar Street, Petersham, NSW

3

Deicorp Projects Petersham Pty Ltd

East	329446.6 m
North	6248007.5 m
Surface RL	36.40 m AHE
Contractor	Rockwell Dri
Drill Rig	Hanjin DB8

North

Inclination

5 m MGA94 Zone 56 ٩HD Drilling Pty Ltd 38 -90°

Sheet 1 OF 3 Date Started 8/3/16 Date Completed 8/3/16 Date: 8/3/16 Logged JZ Checked SK Date: 24/5/16

		Dri	lling		Sampling				Field Material Desc				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
-	KH.	1	0-	36.35			R A /	1	ASPHALT: 50mm thick.	人 - 人	人 - ノ	PAVEMENT	Т
			-	1	BH5_0.2-0.4 ES 0.20-0.40 m		\bigotimes	-	FILL: Gravelly SAND; fine to medium grained, dark grey/dark brown, gravel is fine to medium, sub-angular, with clay.	D	-	FILL	
		ering	-	0.50 35.90	SPT 0.50-0.95 m		XX x	СН	Silty CLAY; high plasticity, grey mottled orange-brown.	М	VSt	RESIDUAL SOIL	+
		GWNE on completion of augering	-	0.75 35.65	4,8,13 N=21	-	— >		SHALE; grey mottled brown, extremely low to very low	(>PL		WEATHERED ROCK	+
	E	n of	1 —	-	BH5_0.5-0.75 BH5_0.75-0.95				strength, extremely to distinctly weathered.				
AD/T		letio	-	-	0.75 m PP =200-250 kPa								
◄			-										
		ou	-	-	SPT 1.50-1.80 m 15,30 HB					-	-		
		NN	-		N>30 BH5_1.5-1.8								
		Ö	2—	1	BH5_2.0-2.5 D 2.00-2.50 m								-
	F		-	1	2.00-2.50 11								
				2.50					Continued as Cored Borehole	-			+
			-										
			3—	-									
			-	-									
			-	-									
			-										
			-	-									
30.004 Datget Lab and in Situ Tool - DGD Lib: EIA 1.03 2014/07-05 Pij: EIA 1.03 2014/07-05			4 —										-
.03 201			-										
: EIA 1			_										
7-05 Prj			-	_									
2014-0			5—	-									-
A 1.03			-	-									
E E			-	-									
- DGD			-	-									
I 1001			-	-									
ig In Si			6—										-
Lab ar													
Datge			-										
			-	-									
8:07 8.			7—	-									.
2016 1			-	-									
24/05			-	-									
gFile>>			-	1									
Drawin			- 8]									
× Rds			0	-									
LOGS.			-	-									
HOLE			-	-									
BORE			-	-									
E22910			9 —	-									.
OLE 3			-	1									
SOREH			-	1									
S AU E													
2 100			10-										
EA LB1.03 GLB Log IS AU BOREHOLE 3 EZ2913 BOREHOLE LOGS GPJ < <drawngfile>> 24/05/2016 18/07 8.</drawngfile>					This borehole	e log	j shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	mpanying standard notes.	
A LIB													
ш́													

Cor	taminat	ion R	emediatio	ral on Geote	chnical	Proje Loca Posit Job N Clien	tion Regent & Trafalgar Street, Petersham, N ion Site 3 No. E22913 t Deicorp Projects Petersham Pty Ltd	SW 1 S (East North Surfac Contra Drill R nclina	ig	329446.6 m 6248007.5 m MGA94 Zone 56 36.40 m AHD Rockwell Drilling Pty Ltd Hanjin DB8 -90°	Sheet Date Started Date Completed Logged JZ Checked SK	2 OF 8/3/16 8/3/16 Date: Date:	6 6 8/3/	
			Drillir	g			Field Material Description					Information			
METHOD	WATER	TCR	RQD (SCR)	OEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STR Is ₍₅	ERRED ENGTH	H DEFECT DESCRI		D SF	/ERA EFE(PACII (mm)	N N
		14	4 (5)	- - - - - - - - - - - - - - - - - - -	<u>2.50</u> 33.90 <u>5.00</u> 31.40		Continuation from non-cored borehole CORELOSS: 2.5m thick.	XW			5.00-5.14: DS 140mm				
NMLC	90-100% RETURN	40	17 (14)		6.30 30.10 6.55 29.85 7.51		CORELOSS: 250mm thick. SHALE; bedding dipping 0-5°, dark grey with red-brown iron staining.	xw			5.31: BP 0 - 5° UN SM VNR 5.35: JT 10° CU SM VNR 5.38: JT 10° CU SM VNR 5.48: JT 10° CU SM VNR 5.48: BP 0° PR SM CN 5.58: BP 0° PR SM CN 5.72: BP 5° PR SM CN 5.82-5.88: CS 60mm 5.82-5.88: CS 60mm 5.82-5.89: DS 30mm 6.84: 59° PR SM CN 6.64: BP 0° PR SM CN 6.64: BP 0° PR SM CN 6.64: DS 50mm 6.78-6.34: DS 50mm 6.78-6.84: DS 60mm 6.88: JT 45° CU SM VNR 6.987-70: DS 80mm 7.06-7.18: SZ 120mm	N			
		100	77 (73)	- - 8	28.89		SHALE; bedding dipping 0-5°, <1mm thick, dark grey.	DW			7.22: BP 0° PR SM CN 7.31: BP 0° PR SM CN 7.32: JT 30° PR SM CN 7.46: JT 5 - 15° CU SM CN 7.54: BP 0° PR SM CN 7.76: BP 0° PR SM CN 7.96: BP 0° PR SM CN 8.05-8.48: BPx6 0° PR SM CN avg	g sp = 30-200mm			
		100	27 (5)	- - 9 - - 10	<u>8.50</u> 27.90		From 8.5m, bedding is <1-2mm thick.			•	8.54-8.60: DS 60mm 8.65: JT 30° UN SM CN 8.69: BP 0° PR SM CN 8.74: BP 0° PR SM CN 8.79: BP 0° PR SM CN 8.876: BP 0° PR SM CN 9.05: BP 5° PR SM CN 9.05: BP 5° PR SM CN 9.10: BP 0° PR SM CN 9.15: JT 45° ST SM CN 9.17-9.19: BP×3 0° PR SM CN 9.12-9.31: JT UN SM CN				

¢	eia		St	tion Geote	ia	Proje Loca Posit Job N Clien	tion Regent & Trafalgar Street, Petersham, NSV ion Site 3 No. E22913	V N S C	iast Iorth Surface RL Contractor Drill Rig Inclination	329446.6 m 6248007.5 m MGA94 Zone 56 36.40 m AHD Date Started Rockwell Drilling Pty Ltd Hanjin DB8 -90° Checked SK	BH5 3 OF 3 8/3/16 8/3/16 Date: 8/3/16 Date: 24/5/16
			Drilli	ing			Field Material Description			Defect Information	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERREI STRENGT Is ₍₅₀₎ MPa	H DEFECT DESCRIPTION & Additional Observations	AVERAGE DEFECT SPACING (mm)
		100	27 (5)	10 — - - - - - - - - - - - - - - - - - - -	-		SHALE; bedding dipping 0-5°, <1mm thick, dark grey.	DW SW FR	•	9.24: BP 0° PR SM CN 9.26: BP 0° PR SM CN 9.32: BP 0° PR SM CN 9.39: BP 0° PR SM CN 9.39: BP 0° PR SM CN 9.49: JT 45° PR SM CN 9.49: JT 45° PR SM CN 9.52: BP 0° PR SM CN 9.58: JT 60° PR SM CN 9.57: JT 70° PR SM CN 9.67: JT 70° PR SM CN 9.66: BP 0° PR SM CN 9.33:10.02: DS 90mm 10.03: JT 10 - 30° CU SM CN 10.12: BP 5° PR SM CN 10.15: BP 5° PR SM CN 10.17: BP 5° PR SM CN	
	90-100% RETURN	100	54 (20)	12 — - - - - - - - - - - - - - - - - - - -					•	10.17: BP 5° PR SM CN 10.18: BP 5° PR SM CN 10.22: BP 5° PR SM CN 10.24: BP 5° PR SM CN 10.26-10.30: JT 90° ST SM CN 10.37: BP 5° PR SM CN 10.44: BP 5° PR SM CN 10.49: BP 5° PR SM CN 10.53: BP 5° PR SM CN 10.53: BP 5° PR SM CN 10.54: JT 45° PR SM CN 10.63: 10.67: DS 40mm 10.63: 10.67: DS 40mm 10.67-10.71: JT 90° PR SM CN 10.67-10.72: JT 90° PR SM CN 10.82-10.87: JT 80 - 90° UN SM CN 10.82-10.87: JT 80 - 90° UN SM CN 10.89-10.91: DS 20mm 10.89: D10° PR SM CN 10.89-10.91: DS 20mm 10.94: BP 5° PR SM CN 10.97-11.00: DS 30mm 12.56: BP 0° PR SM CN 12.66: BP 0° PR SM CN 12.66: BP 0° PR SM CN 12.67: JT 90° PR SM CN	
		100	60 (20)	15 — - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			DW	•	12.71: BP 0° PR SM CN 12.76: BP 0° PR SM CN 12.77: 12.82: JT UN SM CN 12.82: BP 0° PR SM CN 12.92: BP 0° PR SM CN 12.92: BP 0° PR SM CN 13.02: BP 0° PR SM CN 13.10: BP 0° PR SM CN 13.10: BP 0° PR SM CN 13.28: JT 80 - 90° CU SM CN 13.29: JT 80 - 90° CU SM CN 13.29: JT 80 - 90° CU SM CN 13.29: JT 80 - 90° RSM CN 13.77: BP 0° PR SM CN 13.77: BP 0° PR SM CN 13.80: BP 0° PR SM CN 13.80: BP 0° PR SM CN 13.94: BP 0° PR SM CN 13.96: LA00: CS 40mm 14.12: LA8: BFX10 0° PR SM CN avg sp = 60-200mm 14.92: JT 0 - 5° ST SM CN 14.94: 15.00: SZ 60mm 14.94: 15.35: BPX 80 ° PR SM CN avg sp = 30-100mm	
EA LIB 103 GL Log IS AU CORED BOREHOLE 3 E22913 BOREHOLE LOGS CPJ <<0 awnighter> 24/05/2016 18:11 8:30,004 Darget Lah and in Stu Tod - DOD Lix EM 1:03 2014-07-95 Pri EM 1:03 Pri EM 1:					- 19.25		Hole Terminated at 17.15 m Backfilled with drilling spoil and concrete capped.			15.05-15.35: BPX8 0° PR SM CN avg sp = 30-100mm 15.37: 11 0° UN SM CN 15.40: BP 0° PR SM CN 15.40: BP 0° PR SM CN 15.66-15.58: DS 20mm 15.66-15.58: DS 20mm 15.61-15.64: JT 80° UN SM CN 15.78: BP 0° PR SM CN 15.78: BP 0° PR SM CN 15.99-16.00: DS 10mm 16.08: BP 0° PR SM CN 16.15: BP 0° PR SM CN 16.15: BP 0° PR SM CN 16.15: BP 0° PR SM CN 16.21: BP 0° PR SM CN 16.22: JT 10° ST SM CN 16.30: BP 0° PR SM CN 16.35: BP 0° PR SM CN 16.35: BP 0° PR SM CN 16.35: BP 0° PR SM CN 16.37: CS 10mm	
EIA LIB 1.03.GLB Log IS AL				20 —	-	Thi	is borehole log should be read in conjunction with Er	viror	mental Inve	estigations Australia's accompanying standard notes.	

eiaust	ralia			CORE PHO	OTOGRA	PH OF BOREHOLE: BH5
Project: Location: Position: Job No. : Client:	Proposed Mixed Use Development 3-7 Regent Street (Site 1), 13-17 Regent Street (Site 2) & 287-309 Trafalgar Street (Site 3), Petersham, NSW Site 3 E22913 DeiCorp Projects Petersham Pty Ltd	East: North: Surface RL: Inclination: Box: Hole Depth:	329446.6 m 6248007.5 m MGA94 Zond 36.40 m AHD -90° 1 & 2 of 4 17.15 m		Depth Range: Contractor: Drill Rig: LOGGED: JZ CHECKED: SK	2.50 m to 10.00 m Rockwell Drilling Services Pty Ltd Hanjin DB8 DATE: 8/3/16 DATE: 24/5/16
	3, 4, 5, 6, 7, 8, 9, 10, 11 5, 7, 8, 9, 10, 12, 3, 4, 5, 6, 7, 8, 9, 20, 1, 2, 3, 4, 5, 6, 7, 8 7, 8, 9, 10, 12, 3, 4, 5, 6, 7, 8, 9, 20, 1, 2, 3, 4, 5, 6, 7, 8	13 14 1 9 301 2 3 4 5 6 7 8	15 16 17 18 19 20 3 3 9 401 2 3 4 5 6 7 8 9 501 2 3 4	1 22 23 27 25 26 4 5 6 7 8 9 601 2 3 4 5 6	5 27 28 29 30 7 8 9 701 2 3 4 5 6 7	31 32 33 34 35 81 37 38 39 40 4 8 9 801 2 3 4 5 6 7 8 9 901 2 3 4 5 6 7 8 91001 2 3 4
	E22913 PETERSHA	M	BH5	2.50 m – 17.15 m		. 8/3/16
2			Start at 2.50 m No	o Core		
3	NO CO	DRE	2.5m -	5.0m	•	in the second
4	NO CORE					
5	CARLES					
BH5 6		NO CORE	6.30-6.55m		2.5M	
7	A A A A	and the second	and the first			the compression of the
8		feberetennen gesoger (neisen	inter and the second	Red V		
9		e ti pra i e e e son		E.		

CORE PHOTOGRAPH OF BOREHOLE: BH5

Project: Location:	Proposed Mixed Use Development 3-7 Regent Street (Site 1), 13-17 Regent Street (Site 2)	East: North:	329446.6 m 6248007.5 m MGA94 Zone 56	Depth Range: Contractor:	10.00 m to 17.15 m Rockwell Drilling Services Pty Ltd
Location.					o i
	& 287-309 Trafalgar Street (Site 3), Petersham, NSW	Surface RL:	36.40 m AHD	Drill Rig:	Hanjin DB8
Position:	Site 3	Inclination:	-90°	LOGGED: JZ	DATE: 8/3/16
Job No. :	E22913	Box:	3 & 4 of 4	CHECKED: SK	DATE: 24/5/16
Client:	DeiCorp Projects Petersham Pty Ltd	Hole Depth:	17.15 m		
19	3 3 5 5 7 8 0 10				

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	El 37 38 39 40 41 1 2 3 4 5 6 7 8 91001 2 -
TUR	E22913 PETERSHAM BH5 5.00 m-17.15 m 8	/3/16
BH5 10		TING
14		ina, salara madan 💦
12		
13		
8H5 14		erischer mannen
15		
16		
17	End at 17.15 m	

Legging High Legging High Sample or Field TEST Grad Big Structure AND ADDITIONAL OBSERVATIONS Image: Structure And Add to the structure of the structur	6	Pia	ation F	Remediation	Geotechnic	Position Job No. Client	Rege Site 3 E229	nt & Ti 3 13	afalg	Use Development gar Street, Petersham, NSW Petersham Pty Ltd	East North Surface RL Contractor Drill Rig Inclination	329444.0 m 6247965.1 m M 36.70 m AHD Terratest Pty L Hydropower So -90°	.td cout		ne 56	Date Started Date Completed Logged JZ	1 OF 1 11/3/16 11/3/16 Date: 11/3 Date: 24/5
User No. No. <th></th> <th>z</th> <th></th> <th>lling</th> <th></th> <th>Sampling</th> <th></th> <th></th> <th>Ы</th> <th></th> <th>Fiel</th> <th>d Material Desc</th> <th></th> <th>_</th> <th></th> <th></th> <th></th>		z		lling		Sampling			Ы		Fiel	d Material Desc		_			
E 36.65 BH80, 0.2-0.4 ES DFLC See AAD. Dire to medium granied, disk greymink D TLL TLL TLL TLL D TLL TLL D TLL TLL D TLL TLL TLL D TLL D TLL	MEIHOU	PENETRATIO RESISTANCE	WATER		<i>DEPTH</i> RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMB(SOIL/ROCK MATE	RIAL DESCR	IPTION	MOISTURE	CONSISTENC DENSITY		ADDITIONAL	_
3 - 340 DHEM 22.3.0 ES 283.300 15.21.25 Ne46 BHEM_30.3.45 - SHALE: dark prowingley, extremely low strength, extremely low strength, is.21.25 Ne46 BHEM_30.3.45 - SHALE: dark prowingley, extremely low strength, is.21.25 Ne46 BHEM_30.3.45 - SHALE: dark prowingley, extremely low strength, is.21.25 Ne46 BHEM_4.5.4.95 - <td></td> <td></td> <td></td> <td>- - - - - - - - - - - - - - -</td> <td>0.50</td> <td>0.20-0.40 m SPT 0.50-0.95 m 3,5,4 N=9 BH6M_0.5-0.95 BH6M_1.3-1.5 ES 1.30-1.50 m SPT 1.50-1.95 m 5,7,6 N=13</td> <td></td> <td></td> <td><u> </u></td> <td>FILL: Gravelly SAND; fine to n brown, gravel is fine to mediuu FILL: Silty CLAY; low plasticity fine to medium grained sand a</td> <td>n, sub-angular</td> <td>, with clay.</td> <td>D M</td> <td>-</td> <td></td> <td>MENT</td> <td></td>				- - - - - - - - - - - - - - -	0.50	0.20-0.40 m SPT 0.50-0.95 m 3,5,4 N=9 BH6M_0.5-0.95 BH6M_1.3-1.5 ES 1.30-1.50 m SPT 1.50-1.95 m 5,7,6 N=13			<u> </u>	FILL: Gravelly SAND; fine to n brown, gravel is fine to mediuu FILL: Silty CLAY; low plasticity fine to medium grained sand a	n, sub-angular	, with clay.	D M	-		MENT	
E -			1 29/04/16	-	<u>2.50</u> 34.20	2.80-3.00 m SPT 3.00-3.45 m 15,21,25 N=46			-	SHALE; dark brown/grey, extr extremely to distinctly weather	emely low to ve red.	ery low strength,			WEAT	HERED ROCK	
F 6 600 30.70 SPT 6.00-6.45 m 21.22.29 N=51 BH6M_6.0-6.45 From 6.0m, very low strength, distinctly weathered. F 7 SPT 7.00-7.12 m 25/120mm HB N=SPT SPT 7.00-7.12 m 25/120mm HB N=SPT ROCK H 8 - - - SHALE; dark grey, very low to low strength, distinctly weathered. ROCK VH - 9.00 BH6M_8.5-9.0 D 8.50-9.00 m BH6M_8.5-9.0 D 8.50-9.00 m From 8.5m, low strength. ROCK			-	5		16,29,29 N=58				From 4.5m, dark grey mottled	 red.		_				
H N=SPT BH6M_7.5-7.62 SHALE; dark grey, very low to low strength, distinctly weathered. ROCK H 8 -<		F		-		21,22,29 N=51 BH6M_6.0-6.45 SPT 7.00-7.12 m				From 6.0m, very low strength,	distinctly weat		_	-			
VH 2 28.20 BH6M_8.5-9.0 D 8.50-9.00 m From 8.5m, low strength. 9 9.00 Hole Terminated at 9.00 m Hole Terminated at 9.00 m		н		8-		N=SPT				SHALE; dark grey, very low to weathered.	low strength, c	distinctly			ROCK		
		VH		- - 9	28.20	BH6M_8.5-9.0 D 8.50-9.00 m				Hole Terminated at 9.00 m			-				

Cor	eia	ion R	emediation	alia	Position Job No. Client	Rege Site 3 E229	ent & T 3 113	rafalç	Use Development East ar Street, Petersham, NSW North Surface Contra Petersham Pty Ltd Drill Rig Inclinat	tor Terratest Pty Hydropower on -90°	D / Ltd Scout	94 Zoi		Sheet Date Started Date Completed Logged JZ Checked SK	BH7 1 OF 3 10/3/16 10/3/16 Date: 10/3/1 Date: 24/5/16
	z	Dril	ling		Sampling			Ы		Field Material De					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL D	SCRIPTION	MOISTURE	CONSISTENCY		STRUCTURE ADDITION/ OBSERVATIO	AL .
AD/T	F	GWNE on completion of augering		36.55 0.50 36.10 2.30 34.30 33.20	BH7_0.2-0.4 ES 0.20-0.40 m SPT 0.50-0.95 m 4,6,6 N=12 BH7_0.5-0.95 BH7_0.8-1.0 ES 0.80-1.00 m SPT 1.50-1.95 m 5,7,10 N=17 BH7_1.5-1.95 BH7_2.3-2.5 ES 2.30-2.50 m SPT 3.00-3.45 m 5,8,10 N=18 BH7_3.0-3.4 3.00 m PP =200-500 kPa BH7_3.4-3.45 SPT 4.50-4.95 m 11,18,20 N=38 BH7_4.5-4.95			- - -	ASPHALT: 50mm thick. FILL: Gravelly SAND; fine to medium g gravel is fine to medium, sub-angular, ' FILL: Sitty CLAY; low plasticity, dark gr brown/red-brown, with fine to medium to medium gravel. Sitty CLAY; high plasticity, grey mottled brown ironstone gravel, fine to medium SHALE; dark grey/brown, extremely low weathered.	y/dark rained sand and fine red-brown, with dark sub-rounded.	(<pl< td=""><td></td><td>-</td><td>MENT DUAL SOIL</td><td></td></pl<>		-	MENT DUAL SOIL	
				5.50					Continued as Cored Borehole						

Co	eia	AU ation F	temediati	ion Geote	ia Inchnical	Proje Loca Posit Job I Clier	tion Regent & Trafalgar Street, Petersham, NSW tion Site 3 No. E22913 nt Deicorp Projects Petersham Pty Ltd	/ N S C D	ast lorth urface contrac vrill Rig nclinati	tor I	329430.9 m 6247937.7 m MGA94 Zone 56 36.60 m AHD Terratest Pty Ltd Hydropower Scout	EHOLE: Sheet Date Started Date Completed Logged JZ Checked SK	2 OF 3 10/3/16 10/3/16 Date: 10/3 Date: 24/5	3/1
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	Field Material Description	WEATHERING	INFE STRE Is(50)	NGTH MPa	DEFECT DESCRIP & Additional Observa		AVERAC DEFEC SPACIN (mm)	CT NG)
					<u>5.50</u> 31.10		Continuation from non-cored borehole CORELOSS: 2.2m thick.							
NMLC	90-100% RETURN	21	0 (0)	6 — - - 7 — - 8 — - -	7.70 28.90 8.30 28.20		CORELOSS: 100mm thick.	xw Dw	•		7.82-7.91: DS Clay 90mm 7.96-8.00: DS 40mm 7.97: JT 40° PR SM SN 8.01: JT 45° PR SM SN 8.07: BP UN SM VNR 8.23-8.30: CS 70mm 8.40-9.08: DZ Clay 660mm			
		96	21 (13)	9 — 10 —	-	Th	SHALE, dark grey.	ŪW	menta	I Inves	9.13: BP 5° PR SM CN 9.15: BP 5° PR SM CN 9.16-9.20: JT 70° UN SM CN 9.20-9.23: DS 30mm 9.29-9.43: DS 140mm 9.49-9.71: DZ Clay 220mm 9.77-9.80: JT 45° UN SM VNR	standard notes.		

e	eia	AU ation R	st	tion Geot	ia	Proje Loca Posit Job N Clien	tion Regent & Trafalgar Street, Petersham, NSV ion Site 3 Io. E22913	N N S C D	ast lorth contractor contractor prill Rig nclination	BOR 329430.9 m 6247937.7 m MGA94 Zone 56 36.60 m AHD Terratest Pty Ltd Hydropower Scout -90°	Sheet Date Started Date Completed Logged JZ Checked SK	BH7 3 OF 3 10/3/16 10/3/16 Date: 10/3/16 Date: 24/5/16
			Drilli	ng			Field Material Description			Defect	Information	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING		& Additional Observ		AVERAGE DEFECT SPACING (mm)
		96	21 (13)	10-	_		SHALE; dark grey.	xw Dw	-	9.90-10.08: CS 180mm 10.10: BP 0° PS M CN 10.21-10.27: DS Clay 60mm 10.35-10.45: DS 100mm 10.57-10.63: DS 60mm		-
2 2014/07-05 NMLC	90-100% RETURN	100	35 (18)	11 — 11 — 12 — 13 —	<u>11.10</u> 25.50		SHALE; bedding dipping 0-10°, <1-2mm thick, dark grey.	DW FR	•	10.68-10.79: CS 110mm 10.81: JT 90° PR SM CN 10.85-10.86: DS Clay 10mm 10.90-11.10: DS 200mm 11.13: BP 0° PR SM CN 11.17-1124: SZ 70mm 11.32: BP 0° PR SM CN 11.38: BP 0° PR SM CN 11.44: BP 0° PR SM CN 11.49: BP 0° PR SM CN 11.49: BP 0° PR SM CN 11.71: BP 0° PR SM CN 11.71: BP 0° PR SM CN 11.72: JT 10° CU SM CN 12.92: JT 5 - 10° ST SM CN 12.22: JT 10° CU SM CN 12.23: BP 0° PR SM CN 12.22: JT 10° CU SM CN 12.30: BP 0° PR SM CN 12.33: BP 0° PR SM CN 12.34: BP 0° PR SM CN 12.34: BP 0° PR SM CN 12.32: JT 10° CU SM CN 12.34: BP 0° PR SM CN 12.36: BP 0° PR SM CN 12.37: 12.37: JT 00 SU MSM 12.42-12.43: DS 10mm 12.62: BP 0° PR SM CN 12.74-12.73: JT CU SM CN 12.74-12.20: JT ST SM CN 12.74-12.20: JT ST SM CN 12.89-12.90: DS Clay 10mm 12.84-12.96: DS 20mm 13.04: BP 0° PR SM CN		
016 18:11 8:30.004 Lagge Lab and In Site loo - DGD LIC: EA 1.03 2014-07-05 PG EA 1.03 2014-07-05		100	31 (17)	15 — 16 —	- - - - - - - - - - - - - - - - - - -				•	13.05-13.21: JT 70 - 90° ST SM CN 13.08: BP 0° PR SM CN 13.12: BP 0° PR SM CN 13.22: BP 0° PR SM CN 13.25: BP 0° PR SM CN 13.38: BP 0° PR SM CN 13.36: JT 10 - 30° CU SM CN 13.60-13.53: JT 90° PR SM VNR 13.60-13.75: JT 80° VN SM CN 13.70: BP 0° PR SM CN 13.77: BP 0° PR SM CN 13.76: BP 0° PR SM CN 13.46: D° PR SM CN 14.00-14.07: JT 85° UN SM CN 14.20: A25: DS 50mm 14.20: BP 0° PR SM CN 14.20: BP 0° PR SM CN 14.23: BP 0° PR SM CN 14.33: BP 0° PR SM CN 14.35: BP 0° PR SM CN 14.43: BP 0° PR SM CN 14.43: BP 0° PR SM CN 14.43: BP 0° PR SM CN 14.53: BP 0° PR SM CN 14.55: BP 0° PR SM CN 14.45: BP 0° PR SM CN 14.53: BP 0° PR SM CN 14.55: BP 0° PR SM CN 14.45: BP 0° PR SM CN 14.45: BP 0° PR SM CN 14.45: BP 0° PR SM CN 14.55: BP 0° PR SM CN 14.45: BP 0° PR SM CN 14.55: BP 0° PR SM CN 14.45: BP 0° PR SM CN 14.55: BP 0° PR SM CN 15.55: BP		
					19.60		Hole Terminated at 17.00 m Backfilled with drilling spoil and concrete capped.			14.83-14.89. JT 80 [°] UN SM CN 14.89-15.00 [°] JT 80 [°] PR SM CN 15.00-15.00 [°] JT 80 [°] PR SM CN 15.00-15.06 [°] JT 90 [°] PR SM CN 15.06-15.10 [°] CS 40mm 15.17 [°] BP 0 [°] PR SM CN 15.22 [°] BP 0 [°] PR SM CN 15.22 [°] BP 0 [°] PR SM CN 15.67 [°] BP 0 [°] PR SM CN 15.76 [°] 15.79 [°] DS 30mm 15.82 [°] 15.79 [°] DS 30mm 15.82 [°] 15.86 [°] DS 40mm 15.93 [°] BP 0 [°] PR SM CN 16.00 [°] 16.66 [°] JT 70 [°] PR SM CN 16.37 [°] 16.56 [°] JT 90 [°] UN SM CN 16.37 [°] BP 0 [°] PR SM CN 16.43 [°] BP 0 [°] PR SM CN 16.43 [°] BP 0 [°] PR SM CN 16.44 [°] BP 0 [°] PR SM CN 16.56 [°] 16.66 [°] UN SM CN 16.65 [°] 16.66 [°] UN SM CN 16.68 [°] 16.66 [°] UN SM CN 16.68 [°] 16.90 [°] CZ 120mm 16.80 [°] 16.86 [°] JT 80 [°] UN SM CN	N	
				20 —	<u> </u>	 Thi	s borehole log should be read in conjunction with E	nviron	mental Inves	stigations Australia's accompanying	g standard notes.	

BOREHOLE: BH8M

Project	Proposed Mixed Use Development	East
Location	Regent & Trafalgar Street, Petersham, NSW	North
Position	Site 1	Surfac

Job No. Client E22913

Deicorp Projects Petersham Pty Ltd

 East
 329468.0 m

 North
 6247979.6 m MGA94 Zone 56

 Surface RL
 37.70 m AHD

 Contractor
 BG Drilling

 Drill Rig
 Dando Dual Mast Terrier

-90°

Inclination

Sheet1OF2Date Started5/4/16Date Completed5/4/16LoggedJZDate:5/4/16Checked SKDate:24/5/16

F		Dri	lling		Sampling				Field Material Desc	rintic	on		
	z							ЪГ					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
Ы	Н		0-	37.70 0.20			₽. ⊾ 4. ⊿	-	CONCRETE: 200mm thick.	-	-	CONCRETE HARDSTAND	Τ
F		1	-	37.50			x	СН	Silty CLAY; high plasticity, pale grey/ brown/ red-brown, with fine to medium ironstone gravel, grading into weathered			RESIDUAL SOIL	+
			-						fine to medium ironstone gravel, grading into weathered shale.	M	VSt -		
	E		-	0.80	SPT 0.50-0.95 m 4,15,14		<u>×</u> ×						
			-	36.90	N=29 BH8M 0.5-0.8			-	SHALE; grey/ dark brown,extremely low to very low strength, extremely to distinctly weathered.			WEATHERED ROCK	
		16	1		0.50 m PP =300-400 kPa				extremely to distinctly weathered.				-
		29/04/16	_		BH8M 0.8-0.95 BH8M 1.3-1.5 D								
					1.30-1.50 m								
		-											
		_	2—										.
		ering	-										
	F	aug	_										
		o nc	-		BH8M 2.5-3.0 D								
F		GWNE on completion of augering	-		2.50-3.00 m								
AD/T		com	3-										-
		o	-							-	-		
		MN	-										
		0	-										
10			-										
4-07-0			4		BH8M 4.0-4.5 D								-
.03 201			-		4.00-4.50 m								
EIA 1.	н		_										
-05 Prj:													
014-07			5—										_
1.03 2			-										
and in Situ Tool - DGD Lib: ElA 1.03 2014-07-05 Pŋ: ElA 1.03 2014-07-05			-										
DGD				5.60		-			Continued as Cored Borehole				-
- Tool -			-						Continued as Coled Bolehole				
In Situ			6 —										-
			-										
Datgel Lab			-										
**			-										
8.30.00			-										
24/05/2016 18:07			7										
05/201			_										
			-										
vinghik			-										
< <drawing+iie>></drawing+iie>			8—										-
0.0FJ			-										
106			-										
EHOLE			-										
3 BUK			-										
E2291			9—										-
OLE 3			-										
OKEH													
SAUE													
1.03.GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS.GPJ			10-										
J3. GLB					This borehole	e loc	g shoul	d be	read in conjunction with Environmental Investigations Austra	lia's i	accor	npanying standard notes.	
LIB 1.													
EIA													

												BOREH	OLE: I	ЗH	81	N	
	Contar	minati	IU ion R	St	ion Geote	achnical	Proje Loca Posit Job N Clien	tion Regent & Trafalgar Street, Petersham, NSW ion Site 1 No. E22913	N S C	ast Iorth Surfac Contra Drill R		37.70 m AHDDaBG DrillingDa	eet ite Started ite Completed gged JZ	2 C 5/4/ 5/4/ Date	16 16		16
									lr	nclina	ation	-90° Ch	ecked SK	Date	e: 2	4/5/	16
	_	_		Drilli	ng			Field Material Description				Defect Info	ormation	_			
METHOD		WALER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STR Is ₍₅	ERRED ENGTH MPa	H DEFECT DESCRIPTIO & Additional Observatio		:	DEF SPA (m		T G
od - DGD Lik: ElA 1.03 2014-07-05 Pr; ElA 1.03 2014-07-05						5.60		Continuation from non-cored borehole									
4/05/2016 18:11 8.30.004 Datgel Lab and In Situ T			75	8 (19)	6 - - 7	32.10 6.10 31.60		CORELOSS; 500mm thick.	DW	•		6.10-6.18: SZ 80mm 6.21: BP 0° PR S CN 6.22: BP 5° CU S CN 6.24: JT 0° PR S CN 6.26: JT 0° PR S CN 6.316.49: DS 180mm 6.52: BP 0° PR S CN 6.53: BP 0° PR S CN 6.57: BP 0° PR S CN					-
EIA LIB 10.3 GLB Log IS AU CORED BOREHOLE 3 E22913 BOREHOLE LOGS GP1 < <0 namingFile>> 24/05/2016 18:11 8:30.004 Daggel Lab and In Situ Tod - DGD UIX NAM I C		90-100% RETURN	100	21 (26)	- - - 8 - - - -	<u>7.77</u> 29.93		SHALE; bedding dipping 0-5°, <1-2mm thick, dark grey.		•		6.62-6.64: DS 20mm 6.70-6.73: DS 30mm 6.80-6.89: BPx5 0° PR S CN avg sp = 1 6.95-6.98: DS 30mm 7.12: BP 0° PR S CN 7.13-7.72: DS 340mm 7.43-7.77: DS 340mm 7.43-7.798: DS 50mm 8.04: BP 0° PR S CN 8.11-8.15: JT 30 - 45° ST S CN 8.22: JT 10° PR S CN 8.23: BP 0° PR S CN 8.28: BP 0° PR S CN 8.28: BP 0° PR S CN 8.28: BP 0° PR S CN 8.42: BP 0° PR S CN	10-30mm				-
B Log IS AU CORED BOREHOLE			100	81 (99)	9— - - - -	<u>9.55</u> 28.15		Hole Terminated at 9.55 m Borehole converted to monitoring well.				8.42-8.59: HB 8.59: DB 8.80-9.41: BPx5 0° PR S CN avg sp = 6	50-200mm				-
EIA LIB 1.03.GL							Thi	is borehole log should be read in conjunction with Envi	/iron	ment	al Inve	stigations Australia's accompanying sta	andard notes.				

Co	eia	ition F	Remediation	Geotechnie	Position Job No. Client	Rege Site	ent & T 2 913	rafalç	Use Development jar Street, Petersham, NSW Petersham Pty Ltd	East North Surface RL Contractor Drill Rig Inclination	329461.7 m 6247914.4 m N 39.30 m AHD Terratest Pty L Hydropower So -90°	td cout)4 Zoi		Sheet Date Started Date Completed Logged SY Checked SK	1 OF 3 8/3/16
	Z	-	lling		Sampling	0		OL		Fiel	ld Material Desc					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATE	RIAL DESCR	IPTION	MOISTURE	CONSISTENCY		STRUCTURE ADDITION OBSERVATI	IAL
AD/T	н н н н н н н н н н н н н н н н н н н			39.25 0.40 38.90 1.00 38.30 1.89 37.41 2.10 37.20 4.50 4.50	BH9M_0.2-0.3 ES 0.20-0.30 m SPT 0.50-0.95 m 7,10,13 N=23 BH9M_0.5-0.95 BH9M_1.0-1.1 ES 1.00-1.10 m SPT 1.50-1.95 m 7,10,13 N=23 BH9M_1.5-1.89 BH9M_1.5-1.89 BH9M_1.89-1.95 1.89 m PP = 370-500 kPa BH9M_2.6-2.7 D 2.60-2.70 m SPT 3.00-3.06 m 6/60mm HB N=SPT BH9M_3.0-3.06 BH9M_3.0-3.06 BH9M_3.4-3.5 D 3.40-3.50 m BH9M_3.8-3.9 D 3.80-3.90 m			- - - -	ASPHALT: 50mm thick. FILL: Silty SAND; fine grained some rootlets and terracotta// FILL: Silty Gravelly CLAY; low grey, gravel is fine to medium and brick fragments. FILL: Silty CLAY; low plasticit and timber fragments, slight of Silty CLAY; high plasticity, bro some fine to medium sub-ang SHALE; grey-brown, with son strength, distinctly weathered From 4.1m, grey, very low to 1 Continued as Cored Borehole	oncrete fragme plasticity, brow, , sub-angular, v y, dark brown, y rganic odour.	ents. vn mottled dark with some timber with some brick red mottling, with gravel.		VSt -	FILL	DUAL SOIL THERED ROCK	
	[<u> </u>	10-	<u> </u>	This boreh	lole log	g shoul	d be	read in conjunction with Envi	ronmental Inve	estigations Austra	lia's	accor	l mpanyii	ng standard notes.	

												BORE	HOLE:	BH	9 N							
Project Proposed Mixed Use Development Location Regent & Trafalgar Street, Petersha Position Site 2 Job No. E22913 Client Deicorp Projects Petersham Pty Ltd									/ N S C E	Cont Drill I	ice RL ractor Rig	39.30 m AHD Terratest Pty Ltd Hydropower Scout	Sheet Date Started Date Completed Logged SY	Date	6 6 : 8/3							
F										nclin	ation		Checked SK	Date		5/10						
	Drilling Field Material Description Defect Information																					
METHOD		WALER	TCR	RQD (SCR)	OEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STI Is	FERRED RENGTH (50) MPa	& Additional Observa		S	VERA DEFE PACI (mm	ECT ING n)						
EA LIB 103 GLB Log IS AU CORED BOREHOLE 3 E22013 BOREHOLE LOGS GPJ <-OnawingFile>: 24/05/2016 18:11 9.30.04 DageLab and in Stu Tod - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07 Prj: EIA 1.03 2014-07-05 Prj: EIA 1			60	32 (28) 16 (29) 73 (79)		4.50 34.80 4.73 34.57 5.06 34.24 6.00 33.30 8.56 30.74		CORELOSS; 330mm thick. SHALE; bedding dipping 0-5°, dark grey, with some orange staining, interbedded with clay. From 6.0m, heavy iron staining, no clay. SHALE; bedding dipping 0-5°, <1mm thick, dark grey.			• •	4.57: BP 0° PR RF VNR 4.61-4.64: DS Clay 30mm 4.64-4.71: JT 90° CU RF Fe SN 5.06-5.08: DS Clay 20mm 5.11-5.16: CS some fine to medium 5.34: BP 0 - 10° UN RF Clay VNR 5.53-5.52: DS Clay 40mm 5.68: SD SC Clay 10mm 5.68: SD SC Clay 10mm 5.68: SD SC Clay 10mm 5.68: SD SC Clay 10mm 5.68: SD 10° PR RF Fe SN 6.37-6.55: JT PR RF Fe SN 6.66: BP 10° PR RF Fe SN 6.37-6.55: JT PR RF Fe SN 7.32-7.32: JT 20° PR RF Fe SN 7.32-7.32: JT 60° PR RF Fe SN 7.32-7.32: JT 60° PR RF Fe SN 7.32-7.43: JT 60° PR RF Fe SN 7.35: BP 0° PR RF VNR 7.56: BP 0° PR RF VNR 7.56: BP 0° PR RF CN gravel infill 7.78-7.82: JT 90° PR RF Fe SN 8.07-8.11: JT 50° PR RF Fe SN 8.07-8.11: JT 50° PR RF Fe SN 8.07-8.41: JT 30° PR RF Fe SN 8.16: JT 30° PR RF CN 8.22: BP 0° 10° PR RF CN 8.23: JT 70° PR RF CN 8.25: BP 0° PR RF CN 8.37-8.46: JT 70° PR RF Fe SN 8.46-8.46: JT 70° PR RF Fe SN 8.46-8.45: JT 70° PR RF CN 9.22-0.55: JT 90° PR RF Clay VNR gravel 9.40-9.43: CS with fine to medium, 3 30mm 9.48-9.55: JT 0 - 90° UN RF Clay VN 8.45-84: JT 70° PR RF Clay VNR gravel 9.46-9.55: JT 0 - 90° UN RF Clay VNR 9.48-9.55: JT 0 - 90° UN RF Clay VNR	nfill and clay, 20mm I infill sub-rounded, shal									
EIA LIB 1.03.(This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.																					

		(BORE	HOLE:	BH9M				
Contamination Remediation Geotechnical Location Regent & Tr Position Site 2 Job No. E22913								tion Regent & Trafalgar Street, Petersham, NSW ion Site 2 No. E22913	egent & Trafalgar Street, Petersham, NSW North te 2 Surface RL 22913 Contractor				3 OF 3 8/3/16 8/3/16 Date: 8/3/16				
											-90°	Checked SK	Date: 24/5/16				
	_	_		Drilli	ng			Field Material Description			Defect	Information					
METHOD		WALEK	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	& Additional Observations						
EA LIB 103 GLB Log IS AU CORED BOREHOLE 3 E22013 BOREHOLE LOGS GPJ <-OnewingFile>> 24/05/2019 18:11 8.30.0/4 Darge Lab and In Stu Tod - DGD Lib: ELA 1.03 2014-07-05 Pig ELA 1.0		(0-79% REI UKN	100	02	10			grey.			10.29-10.53: JT 70 - 90° CU RF CN 10.39-11.02: DS 90mm 11.04-11.12: JT 80 - 90° UN RF CN 11.05: JT 45° PR RF CN 11.26: BP 0 - 20° UN RF Clay VNF 11.28: JT 45° PR RF CN 11.75-11.81: JT 80° PR RF CN 11.75-11.81: JT 80° PR RF CN 12.03 BP 0° UN RF Clay VNR 12.03-12.07: JT 50° PR RF CN	N					
EIA LIB 1.03.GLB					20-		Thi	is borehole log should be read in conjunction with Env	viron	mental Inves	tigations Australia's accompanyin	g standard notes.					

			CORE PI	TUTUGRAPH	OF BOREHOLE: BH
Project: Location: Position: Job No. : Client:	Proposed Mixed Use Development 3-7 Regent Street (Site 1),13-17 Regent Street (Site 2) & 287-309 Trafalgar Street (Site 3), Petersham, NSW Site 2 E22913 DeiCorp Projects Petersham Pty Ltd	East: North: Surface RL: Inclination: Box: Hole Depth:	329461.7 m 6247914.4 m MGA94 Zone 56 39.30 m AHD -90° 1 & 2 of 2 13.00 m	Depth Range: Contractor: Drill Rig: LOGGED: JZ CHECKED: SK	4.50 m to 13.00 m Terratest Pty Ltd Hydropower Scout DATE: 8/3/16 DATE: 24/5/16
	22 ¹ 3 3 4 5 6 7 8 9 107 2 3 4 5 6 7 8 9 107 2 3 4 5 6 7 8 9 107 2 3 4 5 6 7 8 9 107 2 3 4 5 6 7 8 9 201 2 3 4 5 6	11 7 8 9 301 2 3 4 5 6	4 15 10 17 18 19 20 21 22 23 23 25	26 27 28 29 30 31 5 5 5 7 5 9 781 2 3 4 5 5 7 8 9 881	21 33 34 35 27 3/ 32 37 40 2 3 4 5 6 401 2 3 4 5 5 4 5 6 11 2 3
	JOB NO. E22913	BH	19M 4.50 m – 13.00 m		
	4		Start at 4.5	£1.4	NO CORE 270mm
	5 N.C.				
	Florence				
	8				
	9				
	10 -				
	The second second				
	12 344				and the second of the

BOREHOLE: BH10M

Project	Proposed Mixed Use Development	East
Location	Regent & Trafalgar Street, Petersham, NSW	North
Position	Site 2	Surfac
Job No.	E22913	Contra

Deicorp Projects Petersham Pty Ltd

Client

329457.8 m urface RL Contractor Drill Rig Inclination -90°

6247869.9 m MGA94 Zone 56 43.00 m AHD Terratest Pty Ltd Hydropower Scout

1 OF 3 Sheet Date Started 7/3/16 Date Completed 7/3/16 Logged SY Date: 7/3/16 Checked SK Date: 24/5/16

		D	rilling		Sampling		Field Material Description									
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	GRAPHIC	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS					
	Н		0-	0.12					-	-	PAVEMENT					
AD/T		on of augeri		<u>0.12</u> 42.88	BH10M_0.2-0.3 ES 0.20-0.30 m SPT 0.50-0.57 m 8/70mm HB N=SPT BH10M 0.5-0.57			ASPHALT: 120mm thick. SHALE; grey-brown, extremely low to very low strength, extremely to distinctly weathered.	-	-	WEATHERED ROCK					
	н	NNE on co	1	<i>1.30</i> 41.70 <i>1.51</i>	BH10M_0.5-0.57 BH10M_0.9-1.0 ES 0.90-1.00 m BH10M_1.0-1.1 D 1.00-1.10 m BH10M_1.4-1.5 D 1.40-1.50 m SPT 1.50-1.51 m 6(10mm HP			From 1.3m, grey-brown, interbedded with iron indurated	-		-					
EA LB 103 GLB Log IS AU BOREHOLE 3 E2913 BOREHOLE LOGS GPJ < <drawingfia>> 2405/2016 18/07 8,30.004 Dargel Lab and In Situ Tool - DGD Lb: EA 102 2014/07/35 PJ; EA 1.02 2014/07/35</drawingfia>					BH100M 1.4-1.3 D 1.40-1.50 m SPT 1.50-1.51 m 6/10mm HB N=SPT BH10M_1.5-1.51			Continued as Cored Borehole								
OLE LOGS.GPJ < <drawingfile< td=""><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawingfile<>			8								-					
IS AU BOREHOLE 3 E22913 BOREHC			9													
EIA LIB 1.03.GLB Log	10 - This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes.															

CORE PHOTOGRAPH OF BOREHOLE: BH10M

Project: Location:	Proposed Mixed Use Development 3-7 Regent Street (Site 1), 13-17 Regent Street (Site 2)	East: North:	329457.8 m 6247869.9 m MGA94 Zone 56	Depth Range: 1.50 m to 11.00 m Contractor: Terratest Pty Ltd
Location.	& 287-309 Trafalgar Street (Site 3), Petersham, NSW	Surface RL:	43.00 m AHD	Drill Rig: Hydropower Scout
Position:	Site 2	Inclination:	-90°	LOGGED: JZ DATE: 7/3/16
Job No. :	E22913	Box:	1 & 2 of 3	CHECKED: SK DATE: 24/5/16
Client:	DeiCorp Projects Petersham Pty Ltd	Hole Depth:	16.00 m	
S. C. C.	1 2 3 4 E 3 7		11-	
	2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 201 2 3 4 5	6 7 8 9 301 2 3 4	14 15 16 17 18 19 20 21 22 23 27 25 5 6 7 8 9 401 2 3 4 5 6 7 8 9 501 2 3 4 5 6 7 8 9 601 2 3 4	26 27 28 29 30 31 32 33 34 35 67 37 38 39 5 6 7 8 9 701 2 3 4 5 6 7 8 9 801 2 3 4 5 6 7 8 9 901 2 3 4 5 6 7 8 9 100
				3 6 7 8 9 701 2 3 4 5 6 7 8 9 801 2 3 4 5 6 7 8 9 901 2 3 4 5 6 7 8 9100
	E22913 EHK	M	Start at	The section of the section
	AND			
	23 110	2 St. P. St. of		
	24 14 14			
	· · · · · · · · · · · · · · · · · · ·		a stranger for the second state of the	
	11 6 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 TA BER ON WARD	
				A State I A A A A A A A A A A A A A A A A A A
	E			
				Him and Arrise Head
	AT BE A REAL STORE			
	O a service a second as a seco			8 No Core n Bonn 3
			the state and the second state and the second state and	
	T. T. A.	and a state of the state of the	2010年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	
Î		A. Such Bar	man Handler Standard Andrew Standard	
			Henricht verschlieden († 1930) somer stellender († 1930) somer stelle	and the state of the second of the second of the second
			the state and provide the state of the state	
			and the second	and the second of the second
F		Carlo to to	and an an interest of the second states of	
ia ia	All and marked	The Hill	a province of the second s	and a provide state of the stat
1916				

CORE PHOTOGRAPH OF BOREHOLE: BH10M

Project: Location: Position: Job No. : Client:	Proposed Mixed Use Development 3-7 Regent Street (Site 1), 13-17 Regent Street (Site 2) & 287-309 Trafalgar Street (Site 3), Petersham, NSW Site 2 E22913 DeiCorp Projects Petersham Pty Ltd	East: North: Surface RL: Inclination: Box: Hole Depth:	329457.8 m 6247869.9 m MGA94 Zone 56 43.00 m AHD -90° 3 of 3 16.00 m		Depth Range: Contractor: Drill Rig: LOGGED: JZ CHECKED: SK	11.00 m to 16.00 m Terratest Pty Ltd Hydropower Scout DATE: 7/3/16 DATE: 24/5/16	
	PROJECT NUMBER: E22913 SITE: 13-17 RECENT ST, PETCH CLIENT: DETCORA LOGGED BY: SY	1 Adaption of	BOREHOLE ID: BHIOM DATE: 07/03/16 METHOD: NMLC DEPTH FROM: [1.9m DEPTH TO: 160 M BOX: 3 OF 3			KODAK Gany Sala ODAK Color Control Paches	AUSTRALIA av MAR NU SE R
11 12 13 14 15		ND 20	15 16 17 18 19 20 21 2 7 8 9 401 2 3 4 5 6 7 8 9 301 2 3 4 5 6 0 mmi	2 23 23 25 2 ×	6 27 28 29 2 7 8 9 31 2 3 4 5 5	30 31 32 33 34 7 6 9 601 2 3 4 5 6 7 8	

orm Number: DGM03

ᆋ

BOREHOLE: BH11M

- Project Proposed Mixed Use Development East Location Regent & Trafalgar Street, Petersham, NSW North Position Site 2
- Job No. Client

E22913

Deicorp Projects Petersham Pty Ltd

329483.6 m Surface RL Contractor Drill Rig

-90°

Inclination

6247883.2 m MGA94 Zone 56 43.50 m AHD Terratest Pty Ltd Hydropower Scout

1 OF 3 Sheet Date Started 7/3/16 Date Completed 7/3/16 Logged SY Date: 7/3/16 Checked SK Date: 24/5/16

		_	ling		Sampling				Field Material Descr			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	LH_	1	0 —	43.45				<u> </u>	ASPHALT: 50mm thick.	<u> </u>	<u> </u>	PAVEMENT
	E		-	0.90 42.60	BH11M_0.1-0.2 ES 0.10-0.20 m SPT 0.50-0.54 m 3/40mm HB N=SPT BH11M_0.5-0.54			-	SHALE; pale grey, extremely low strength, extremely weathered, interbedded with iron indurated bands.			WEATHERED ROCK
	F	augering	1 — - -	42.60	C 1.00-14.70 m BH11M_1.0-1.1 ES 1.00-1.10 m SPT 1.50-1.53 m				From 0.9m, grey-brown, very low strength, distinctly weathered.			-
AD/T		GWNE on completion of augering	- 2— -	-	4/30mm HB N=SPT BH11M_1.5-1.53 BH11M_1.6-1.7 ES 1.60-1.70 m BH11M_2.0-2.1 ES 2.00-2.10 m					-	-	-
	F-H		- - 3—	-	BH11M_2.6-2.7 ES 2.60-2.70 m							-
7-05		29/04/16	- - - 4	4.00	BH11M_3.5-3.6 ES 3.50-3.60 m BH11M_3.9-4.0 D 3.90-4.00 m							
EA LIB 103 GLB Log IS AU BOREHOLE 3 E22913 BOREHOLE LOGS/GPJ < DawingFile>> 2405/2016 18/07 8,30.004 Dage Lab and in Situ Tool - DGD LIb: EIA 103 2014/07/45 Pr; EIA 1.03 2014/07/45			-	-	3.90-4.00 m				Continued as Cored Borehole			
GD LIb: EIA 1.03 2014-0			5 — - -	-								-
I Lab and In Situ Tool - D			- 6	-								-
016 18:07 8:30.004 Datge			- - 7	-								-
< <drawingfile>> 24/05/2</drawingfile>			- - - 8—									
OREHOLE LOGS.GPJ			-	-								
30REHOLE 3 E22913 E			9									-
1.03.GLB Log IS AU I			- 10 —		This borehole	log	shoul	d be	read in conjunction with Environmental Investigations Austral	lia's a	accon	npanying standard notes.
EIA LIB												

												BOREH	OLE: B	H1	1	Μ	
c	eia			ion Geote		Proje Loca Posit Job N Clien	tion Regent & Trafalgar Street, Petersham, NSV ion Site 2 Io. E22913	NN S		ce RL actor	-	43.50 m AHD Terratest Pty Ltd	Sheet Date Started Date Completed Logged SY		/16 /16	3 7/3/16	
										ation			Checked SK	Dat	e:	24/5/16	3
	1		Drilli	ng	1		Field Material Description					Defect I	nformation	_			
METHOD	WATER	TCR	RQD (SCR)	OEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STF Is ₍	ERRE	TH Pa	& Additional Observa			DE SP/	RAGE FECT ACING nm)	
	85-90% RETURN	100	71 (71) 88 (83)		4.00 39.50 38.30		Continuation from non-cored borehole SHALE; pale grey, with red ironstaining. SHALE; bedding dipping 0-10°, grey, with occasional orange iron staining, interbedded with some clay.	DW				 4.16-4.23: CS 70mm 4.38: JT 30° PR RF Fe SN 4.85: JT 40° PR RF Fe SN 4.85: JT 40° PR RF Fe SN 4.86: BP PR RF Fe SN 4.80: JT 0 - 80° CU RF Fe SN 5.59: BP 0 - 5° PR RF Fe SN 6.10: JT 30° PR RF Fe SN 6.10: JT 30° PR RF Fe SN 6.52-6.55: DS Clay 30mm 6.82: BP 0 - 10° UN RF Fe SN 6.52-6.55: DS Clay 30mm 6.82: BP 0 - 20° CU RF CN 7.30: BP 0 - 20° CU RF CN 7.61: BP 0 - 5° PR RF CN 7.86-7.91: CS fine to medium sub-resub-angular shale, 50mm 8.04-8.11: DS Clay 70mm 8.59-8.65: JT 60° PR RF Fe SN 8.59-8.65: JT 60° PR RF Fe SN 	bunded to				
Log IS AU CORED BOREHOLI	80-85% RETURN	100	17 (14)	9 — - - -	9.20 34.30		SHALE; dark grey.	xw Dw	•			9.20-9.25: CZ fine to medium sub-rc sub-angular shale, 50mm 9.34-9.56: CZ fine to medium sub-rc sub-angular shale, 220mm 9.54-9.68: JT 50° PR RF Clay VNR 9.60-9.71: CZ fine to medium sub-rc sub-angular shale, 110mm	ounded to				-
EIA LIB 1.03.GLB				10 —		Thi	s borehole log should be read in conjunction with Er	nviror	nmen	ital Inv	ves	tigations Australia's accompanying	standard notes.				

¢	eia	AU ation R	st	ion Geote	ia achnical	Proje Loca Posit Job N Clien	tion Regent & Trafalgar Street, Petersham, NS Site 2 Io. E22913	WN S C D	ast lorth urface R contracto rrill Rig nclinatior	'L r	BOREH 329483.6 m 6247883.2 m MGA94 Zone 56 43.50 m AHD Terratest Pty Ltd Hydropower Scout -90°	Sheet Date Started Date Completed Logged SY Checked SK	3 OI 7/3/1 7/3/1 Date	= 3 6 6 : 7/	
			Drilli	ng	1		Field Material Description	1 1			Defect	Information	-		
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING		GTH Pa	DEFECT DESCRIP & Additional Observ		S	DEFI PAC (m	RAGE ECT CING m)
		100	17 (14)	10 —	10.53 32.97		SHALE; dark grey. CORELOSS: 280mm thick.	xw Dw			9.933-9.97: JT 50° PR RF Clay VNR 9.93-10.11: CZ fine to medium sub- sub-angular shale, 180mm 10.11-10.25: JT 90° PR RF Fe SN 10.27-10.35: CS fine to medium sul sub-angular shale, 80mm	-rounded to			
				- 11 —	10.81 32.69		SHALE; dark grey.	xw			10.36-10.41: JT 50° PR RF CN 10.41-10.53: CZ fine to medium sul sub-angular shale, 120mm 10.90-10.93: DS Clay 30mm	b-rounded to			
				-	11.27 32.23		CORELOSS: 340mm thick.	DW SW			11.15: BP 0 - 10° PR RF Clay VNR 11.16: JT 30° PR RF CN 11.18-11.22: BPx3 0 - 5° PR RF CN				
		84	56 (56)	- - 12 —	<u>11.61</u> 31.89		SHALE; bedding dipping 0-10°, <1mm thick, dark grey.	DW			11.22-11.27: JT 90° PR RF CN 11.62: JT 0 - 30° CU RF CN 11.74-11.83: BPx3 0 - 5° PR RF Cla	ay VNR			-
	IRN			-	-				-						
NMLC	80-85% RETURN			13 —	-			FR	н						-
	80-8			-	-				•						
		100	94 (94)	14 —	-										-
				-	<u>14.53</u> 28.97		From 14.53m, interbedded with fine grained		•		14.24: BP 0 - 5° PR RF CN 14.33-14.48: DS Clay 15mm 14.41-14.44: DS extremely weather	red, 30mm			Ľ
				- 15 —			sandstone.				14.53: BP 0° PR RF Clay VNR 14.57: BP 0 - 5° PR RF Clay VNR				
202		100	84 (97)	-	-				•		15.12-15.16: JT 0 - 80° UM RF CN 15.23-15.27: JT 50° PR RF CN				
				- 	<u>16.00</u> 27.50										
				-	27.50		Hole Terminated at 16.00 m Borehole converted to monitoring well.								
				- - 17 —	-										
5				-	-										
				- - 18 —	-										-
				-	-										
				- 19 —	-										.
				-	-										
2				- 20											
						Thi	s borehole log should be read in conjunction with E	nviron	mental li	nves	tigations Australia's accompanying	g standard notes.			

CORE PHOTOGRAPH OF BOREHOLE: BH11M

Project:	Proposed Mixed Use Development	East:	329483.6 m	Depth Range:	4.00 m to 13.00 m
Location:	3-7 Regent Street (Site 1), 13-17 Regent Street (Site 2)	North:	6247883.2 m MGA94 Zone 56	Contractor:	Terratest Pty Ltd
	& 287-309 Trafalgar Street (Site 3), Petersham, NSW	Surface RL:	43.50 m AHD	Drill Rig:	Hydropower Scout
Position:	Site 2	Inclination:	-90°	LOGGED: JZ	DATE: 7/3/16
Job No. :	E22913	Box:	1 & 2 of 3	CHECKED: SK	DATE: 24/5/16
Client:	DeiCorp Projects Petersham Pty Ltd	Hole Depth:	16.00 m		

Con		ation F	temediation	Geotechnie	Position Job No. Client	Rege Site 2 E229	ent & T 2 113	rafalç	Use Development gar Street, Petersham, NSW Petersham Pty Ltd	East North Surface RL Contractor Drill Rig Inclination	329476.3 m 6247918.0 m M 40.50 m AHD Terratest Pty L Hydropower So -90°	td cout		ne 56	Sheet Date Started Date Completed Logged JZ Checked SK	1 OF 1 11/3/16 11/3/16 Date: 11/3/ ⁻ Date: 24/5/1
	Z		lling		Sampling	0		OL		Fiel	ld Material Desc					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATE	RIAL DESCR	IPTION	MOISTURE	CONSISTENCY DENSITY		STRUCTURE ADDITION OBSERVATION	AL
	LH/	1	0	40.47	BH12_0.2-0.4 ES			-	ASPHALT: 30mm thick. FILL: Gravelly SAND; fine to r	nedium grained	l, dark brown,	<u>л-</u> р	<u> </u>	PAVEI FILL	MENT	
			- - 1—	<u>0.50</u> 40.00	0.20-0.40 m SPT 0.50-0.95 m 8,9,8 N=17 BH120.5-0.95		X	-	with fine to coarse, sub-angul FILL: Silty CLAY; low plasticit fine to medium gravel and fine of sandstone fragments.	ar gravel. v. dark grev/dar	k brown, with	M (<pl< td=""><td>-</td><td></td><td></td><td></td></pl<>	-			
	E		- - - 2	<u>1.30</u> 39.20	BH12_1.3-1.5 ES 1.30-1.50 m SPT 1.50-1.95 m 11,11,11 N=22 BH12_1.5-1.95			-	SHALE; dark brown/dark grey extremely weathered.	/red, extremely	low strength,			WEAT	HERED ROCK	
AD/T	F		- 3 - - - - 4		SPT 3.00-3.05 m 15/50mm HB N=SPT BH12_3.0-3.1							-	-			
	н		- - - 5	<u>4.50</u> 36.00	SPT 4.50-4.63 m 30/130mm HB N=SPT BH12_4.5-4.63				From 4.5m, very low strength	distinctly weath	hered.					
	νн	-	-	5.50 35.00 6.00	BH12_5.5-6.0 D 5.50-6.00 m				From 5.5m, very low to low st	rength.						
									Hole Terminated at 6.00 m Backfilled with drilling spoil a	nd concrete cap	pped.					
			8													
			- 10													

BOREHOLE: BH15M

Sheet

- Project Proposed Mixed Use Development East Location Regent & Trafalgar Street, Petersham, NSW North Position Site 3 Job No. E22913
- Client Deicorp Projects Petersham Pty Ltd
- 329386.5 m Surface RL Contractor Drill Rig

-90°

Inclination

6248003.3 m MGA94 Zone 56 31.40 m AHD Terratest Pty Ltd Hydropower Scout

1 OF 3 Date Started 8/3/16 Date Completed 8/3/16 Logged JZ Date: 8/3/16 Checked SK Date: 24/5/16

		Dri	ling		Sampling				Field Material Desc				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F			0	31.32				- /	ASPHALT: 80mm thick.	<u> </u>	L-	PAVEMENT	
			- - - 1—	0.50 30.90	BH15M_0.2-0.4 ES 0.20-0.40 m SPT 0.50-0.95 m 3,4,3 N=7 BH15M_0.5-0.9 BH15M_0.9-0.95				FILL: Gravelly CLAY; low plasticity, dark grey/dark brown, gravel is fine to medium, sub-angular, with fine to medium grained sand. FILL: Silty CLAY; medium plasticity, grey mottled red-brown, with fine to medium, sub-angular to sub-rounded gravel.	M (<pl< td=""><td>, -</td><td>FILL</td><td> </td></pl<>	, -	FILL	
	E	29/04/16		<u>1.50</u> 29.90	SPT 1.50-1.95 m 3,3,4 N=7 BH15M 1.5-1.95 1.50 m PP = 100-200 kPa BH15M 1.8-2.0 ES 1.80-2.00 m			СН	Silty CLAY; high plasticity, dark grey.	M	St -	RESIDUAL SOIL	
AD/T		Δ	- 3— - -	<u>3.00</u> 28.40 <u>3.30</u> 28.10	SPT 3.00-3.45 m 4.10,12 N=22 BH15M_3.0-3.3 3.00 m PP =200-220 kPa BH15M_3.3-3.45				From 3.0m, red mottled grey, with ironstone bands. SHALE; red-brown/dark grey, extremely low to very low strength, extremely to distinctly weathered.	_		WEATHERED ROCK	
EA LIB 103 GL Log IS AU BOREHOLE 3 22913 BOREHOLE LOGS GPJ < <drawngfile> 2405/2016 18/77 8.30.04 DageLub and In Stu Tool - DOD I LUX: EA 1.03 2014/07-05 Pp; EA 1.03 2014/07-05</drawngfile>	F		4 — - - 5 —	<u>4.50</u> 26.90	SPT 4.50-4.95 m 13.20.23 N=43 BH15M_4.5-4.95				From 4.5m, grey mottled red-brown.	-	-		
ol - DGD LIb: EIA 1.(-	5.50					Continued as Cored Borehole				-
004 Datgel Lab and In Situ To			6— - -	-									-
e>> 24/05/2010 18:0/ 0.00.			- 7 - -										-
DLE LOGS.GPJ < <ur></ur>			- 8 -										-
REHOLE 3 E22913 BURER			- 9 -										
03.GLB Log IS AU BUI			- - 10—	-	This borehol		shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	npanying standard notes.	-

		R									BOREH	IOLE: B	H1	5N	
c		AU ation F	st	cion Geote	ia	Proje Loca Posit Job N	tion Regent & Trafalgar Street, Petersham, NSW ion Site 3 No. E22913	N S C	ast Iorth Surface Contrac	tor	329386.5 m 6248003.3 m MGA94 Zone 56 31.40 m AHD Terratest Pty Ltd	Sheet Date Started Date Completed		6 6	
						Clien	t Deicorp Projects Petersham Pty Ltd		orill Rig Inclinati		Hydropower Scout -90°	Logged JZ Checked SK	Date Date		
E			Drilli	ng			Field Material Description				Defect	Information			
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING			& Additional Observ	PTION vations	S	VERA DEFE PAC (mn	CT ING 1)
- DGD Lbk: ElA 103 2014-07-05 Py: ElA 103 2014-07-45					5.50		Continuation from non-cored borehole								
04 Datgel Lab and In Situ 100		100	0 (0)	- - 6	25.90		SHALE; dark grey to dark brown.	xw 5w	•		5.50-5.81: DZ Clay 310mm 5.81-5.88: BPx6 0° UN SM SN 5.88-5.93: DS Clay 50mm 5.93-6.26: CZ Clay 330mm 6.26-6.33: DS Clay 70mm 6.34-6.50: CS 160mm				· · · · · · · · · · · · · · · · · · ·
12 8.30.0				-	6.50 24.90	\bigtriangledown	CORELOSS: 500mm thick.								.
PJ < <ur></ur>		63	0 (0)	- 7 - - -	7.00 24.40 7.85		grey/dark brown, highly fractured.	wc	•		7.00-7.29: DZ Clay 290mm 7.33: BP 0° PR SM CN 7.38-7.41: DS Clay 30mm 7.42-7.45: DS Clay 30mm 7.46-7.85: DZ Clay 390mm				
- LOGS.C				8—	8.00 23.40		CORELOSS: 150mm thick. SHALE; dark grey.	w			8.00-8.28: CZ 380m				-
		94	70 (65)	- - 9 - - - - - - - - - - - - 	<u>8.42</u> 22.98		SHALE; bedding dipping 0-5°, <1-2mm thick, dark grey.	FR		•	8.32: BP 0° PR SM CN 8.33: BP 0° PR SM CN 8.36: BP 0° PR SM CN 8.39: BP 0° PR SM CN 8.41: BP 0° PR SM CN 8.53: BP 0° PR SM CN 8.58: BP 0° PR SM CN 8.64: BP 0° PR SM CN 8.77: BP 0 - 5° ST SM CN 8.77: BP 0° PR SM CN 9.01: BP 0° PR SM CN 9.01: BP 0° PR SM CN 9.45: BP 0° PR SM CN 9.46: BP 0° PR SM CN 9.46: BP 0° PR SM CN 9.46: BP 0° PR SM CN				-
EIA LIB 1.03.GLE						Thi	is borehole log should be read in conjunction with Env	viron	menta	l Inves	tigations Australia's accompanying	g standard notes.			

	(BORE	HOLE: B	H15	Μ
	Contamir	ation F	St	tion Geote		Proje Loca Posit Job N	tion Regent & Trafalgar Street, Petersham, NSW ion Site 3 No. E22913	VN S	ast Iorth Iurfac	ictor	329386.5 m 6248003.3 m MGA94 Zone 56 31.40 m AHD Terratest Pty Ltd	Sheet Date Started Date Completed		
						Clier	t Deicorp Projects Petersham Pty Ltd		rill Ri nclina	•	Hydropower Scout -90°	Logged JZ Checked SK	Date: Date:	8/3/16 24/5/16
			Drilli	ng			Field Material Description				Defect	Information		
METUOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STRI Is ₍₅₀	ERRED ENGTH MPa	DEFECT DESCRI & Additional Obser		DE SP.	ERAGE EFECT ACING mm)
	Τ	94	70	10 —			SHALE; bedding dipping 0-5°, <1-2mm thick, dark grey.	FR			10.06: BP 0° PR SM CN			
			(65)	- - - 11	-					•	10.41: BP 0° PR SM CN 10.83: BP 0° PR SM CN 11.08: BP 0° PR SM CN 11.31: JT 10° CU SM CN 11.43: BP 0° PR SM CN			
	-	100	81 (93)	- 12 — - -	12.70					Ŧ	11.45: JT CU SM CN 11.45: JT CU SM CN 11.45: JT 5° CU SM CN 11.61: JT 5° CU SM CN 11.61: JT 15° PR SM CN 12.05: J2.09: JT 45° PR SM CN 12.27: J2.09: JT 45° PR SM CN 12.27: J2.37: JT 70 - 80° ST SM CI 12.38: JT 45° CU SM CN 12.51: 12.55: JT 45° UN SM CN	Ν		
							Hole Terminated at 12.70 m Borehole converted to monitoring well.							
						Thi	s borehole log should be read in conjunction with En	viron	menta	al Inves	tigations Australia's accompanyin	ng standard notes.		

EA LIB 103 GLB Log IS AU CORED BOREHOLE 2 223913 BOREHOLE LOGS/GP1 4078 MIGTINE> 24/05/GP16 18:12 83:30.04 Dage Lab and In Stu Toa - DGD | LIB: EIA 1:03 2014/37:45 Pg: EIA 1:03

CORE PHOTOGRAPH OF BOREHOLE: BH15M

Project: Location:	Proposed Mixed Use Development 3-7 Regent Street (Site 1), 13-17 Regent Street (Site 2)	East: North:	329386.5 m 6248003.3 m MGA94 Zone 56	Depth Range: Contractor:	5.50 m to 12.70 m Terratest Pty Ltd
	& 287-309 Trafalgar Street (Site 3), Petersham, NSW	Surface RL:	31.40 m AHD	Drill Rig:	Hydropower Scout
Position:	Site 3	Inclination:	-90°	LOGGED: JZ	DATE: 8/3/16
Job No. :	E22913	Box:	1 & 2 of 2	CHECKED: SK	DATE: 24/5/16
Client:	DeiCorp Projects Petersham Pty Ltd	Hole Depth:	12.70 m		

EXPLAINATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

DRILLING/EXCAVATION METHOD

НА	Hand Auger	RD	Rotary blade or drag bit	NQ	Diamond Core - 47 mm
DTC	Diatube Coring	RT	Rotary Tricone bit	NMLC	Diamond Core - 52 mm
NDD	Non-destructive digging	RAB	Rotary Air Blast	HQ	Diamond Core - 63 mm
AS*	Auger Screwing	RC	Reverse Circulation	HMLC	Diamond Core - 63 mm
AD*	Auger Drilling	РТ	Push Tube	BH	Tractor Mounted Backhoe
*V	V-Bit	СТ	Cable Tool Rig	EX	Tracked Hydraulic Excavator
*T	TC-Bit, e.g. AD/T	JET	Jetting	EE	Existing Excavation
ADH	Hollow Auger	WB	Washbore or Bailer	HAND	Excavated by Hand Methods

PENETRATION RESISTANCE

Low Resistance L

н

Medium Resistance Μ

Rapid penetration/ excavation possible with little effort from equipment used.

Penetration/ excavation possible at an acceptable rate with moderate effort from equipment used.

High Resistance Penetration/ excavation is possible but at a slow rate and requires significant effort from

equipment used.

Refusal/Practical Refusal R

No further progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator.

¥	Water level at date	shown	<	Partial water loss
\triangleright	Water inflow			Complete Water Loss
GWNE	due to drilling water,	, surface seepage or cave-in of the b	orehole/ test p	
GWNO				dry soon after excavation. However, e been observed had the borehole/ test pit
SAMPLING AND T	ESTING			
PT 7,11 N=18 seating /80mm V V 8	4,7,11 = Blows pe Where practical re Penetration occur	efusal occurs, the blows and penetral rred under the rod weight only rred under the hammer and rod weigh	ion for that inte	
ampling				
5 DS S S	Disturbed Sample Bulk disturbed Sa Gas Sample Water Sample			
⁶³ .	Thin walled tube s	sample - number indicates nominal s	ample diamete	r in millimetres
esting /S D M PT CP	Field Vane Shear Photoionisation D Pressuremeter tes		Ū (peak value, sr= residual value)
PT PTu	Static Cone Pene Static Cone Pene	tration test tration test with pore pressure (u) me	asurement	
ROCK CORE REC	OVERY			
TCR=Total C	Core Recovery	SCR=Solid Core Recover	y (%)	RQD = Rock Quality Designation (%)
$=\frac{Length of cor}{Length of}$	e recovered core run × 100	$=\frac{\sum Length of cylindrical core reconcilente}{Length of core run}$	overed × 100	$=\frac{\sum Axial \ lengths \ of \ core > 100mm}{Length \ of \ core \ run} \times 100$

= Inferred Boundary

- ---- = Probable Boundary

-?-?-?-?-= Possible Boundary

eiau	I Remediation Geote	ia		USED O			SOIL DESCR AND TEST PI	-
	FILL			ANIC SO OH or Pt)	-		CLAY (CL, C	CI or CH)
		BLES or _DERS	***** ***** SILT	(ML or M	H)		SAND (SP c	or SW)
20°2°	GRA\ GW)	VEL (GP or	Combinations of sandy clay	these basic s	ymbols may b	e used to in	ndicate mixed mater	ials such as
Soil is broad	ly classifie	d and described in	STRATIGRAPHY Borehole and Test Pit I aterial properties are as	Logs using the sessed in the	e preferred m field by visua	ethod giver I/tactile me	ı in AS1726 – 1993, thods.	(Amdt1 –
PARTICLE	SIZE CH	HARACTERISTI	CS	USCS SY	MBOLS			
Major Divi	sion	Sub Division	Particle Size	Major D	ivisions	Symbol	Descrip	
	BOULDE	ERS	>200 mm	ے م	of Tre	GW	Well graded grav sand mixtures, lit	
	COBBL	ES	63 to 200 mm	-S less 75m	50% Ins a	GP	Poorly graded gra	vel and gravel-
		Coarse	20 to 63 mm	SOII המצר חס:0 ר	grai 2.mr		sand mixtures, lit Silty gravel, gra	
GRAVE	L	Medium	6 to 20 mm	thar ED	More than 50% of coarse grains are >2.mm	GM	mixtur	es.
		Fine	2 to 6 mm	by d by d	Mo co	GC	Clayey gravel, gra mixtur	
		Coarse	0.6 to 2 mm	COARSE GRAINED SOILS More than 50% by dry mass less than 63mm is greater than 0.075mm)% ins	SW	Well graded sand sand, little or	
SAND	·	Medium	0.2 to 0.6 mm	ARSI han nm is	More than 50% of coarse grains are <2 mm	SP	Poorly graded sar	nd and gravelly
		Fine	0.075 to 0.2mm	ore t 63r	e tha arse e <2	SM	sand, little or Silty sand, sand	
	SILT		0.002 to 0.075 mm	Mc	More of co are	SC	Clayey sand,	sandy-clay
	CLAY		<0.002 mm		20		mixtur Inorganic silts of	
		STICITY PROPE	RTIES	- S nass than	less	ML	very fine sands, i or clayey fir	ock flour, silty
l, percent	40			FINE GRAINED SOILS More than 50% by dry mass less than 63mm is less than 0.075mm	Liquid Limit less < 50%	CL	Inorganic clays of plasticity, gravell clays, silty	low to medium y clays, sandy
(T ₀	20 10 CL-M	CL CI		FINE GRAINED ore than 50% by ss than 63mm is 0.075mm	Liqu	OL	Organic silts and	d organic silty
CEON	20		он	han 6 ban 6 0		MH	clays of low Inorganic silts of	
SITY	10 CL-M	OL	or	ore t ss th	Liquid Limit > than 50%	СН	Inorganic clays of Organic clays of r	
PLASTIC	0	ML		≥∍		ОН	plastic	ity.
2	20	30 40 50	percent			PT	Peat muck and organic	
MOISTURI		TION	49 F				5	
Symbol	Term	Description						
D	Dry		ls are free flowing. Clay					
M W	Moist		han in the dry condition	-		nd gravels t	end to cohere.	
Moisture co		ohesive soils may	water. Sands and grave also be described in rela			r liquid limit	(WL) [» much great	er than,
> greater th		than, « much less		ENSITY				
Symbol	Term	Undrained §	Shear Strength	Symbol	Term		Density Index %	SPT "N" #
VS	Very So	ft 0. to	12 kPa	VL	Very Loos		< 15	0 to 4
S F	Soft Firm		25 kPa 50 kPa	L MD	Loose Medium De	ncity	15 to 35 35 to 65	4 to 10 10 to 30
St	Stiff		100 kPa	D	Dense	lisity	65 to 85	30 to 50
VSt	Very Sti	ff 100 to	200 kPa	VD	Very Den	se	Above 85	Above 50
		esults, consistenc	200 kPa 40 kPa 4					
MINOR CO	MPONE	NTS						
Term		nent Guide					portion by Mass	
Trace	or no diff	erent to general p	y feel or eye but soil pro operties of primary com	ponent		Fine	e grained soils: ≤ 5% grained soil: ≤15%	
Some			by feel or eye but soil properties of primary com		9		grained soils: 5 - 12 rained soil: 15 - 30%	

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 - 1993, (Amdt1 - 1994 and Amdt2 - 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

STRENGTH	
----------	--

••••••			
Symbol	Term	Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide
EL	Extremely Low	< 0.03	Easily remoulded by hand to a material with soil properties.
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.
[#] Rock St	rength Test Res	ults 🖵	Point Load Strength Index, Is ₍₅₀₎ , Axial test (MPa)

Rock Strength Test Results

Point Load Strength Index, Is₍₅₀₎, Axial test (MPa)

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ($Is_{(50)}$) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x Is(50), but can be as low as 5 MPa.

ROCK MATERIAL WEATHERING

Sym	bol	Term	Field Guide		
RS	i	Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.		
EW	1	Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.		
DW	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or		
	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.		
sw	1	Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.		
FR		Fresh	Rock shows no sign of decomposition or staining.		

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

					200000				
Layering					Stru	cture			
Term		Descr	intion		Term				Spacing (mm)
Term		Descr	iption		-		in a ta d		Spacing (mm)
Massive		No lay	ering apparent			•	inated		<6 6 – 20
		<u> </u>				nated			
Poorly Devel	oped	proper	ng just visible; litt	le effect on		y bed	/ bedded	20 - 60 60 - 200	
		· · ·		<i></i>			edded		200 - 600
Well Develop	od		ng (bedding, folia t; rock breaks mo			din be			600 - 2,000
	Jeu		el to layering	ble easily		<u> </u>	ly bedded		> 2,000
						UNCK	iy bedded		> 2,000
Defect Type		Abbr.	Description						
Joint		JT	Surface of a fra	ength. May be c					ross which the rock has little or rock substance, which
Bedding PartingSurface of fracture or parting, across which the rock has little or no tensile strength, pBedding PartingBPBrainSub-parallel to layering/ bedding. Bedding refers to the layering or stratification of a rocindicating orientation during deposition, resulting in planar anisotropy in the rock mate								or stratification of a rock,	
Foliation		FL	Repetitive plana	ar structure para	llel to th	ne she	ear direction	or perpe	endicular to the direction of (SH) and Gneissosity.
Contact	-	CO	The surface bet	ween two types	or ages	s of rc	ock.		
Cleavage CL Cleavage planes appear as parallel, closely spaced and planar surfaces result mechanical fracturing of rock through deformation or metamorphism, independent									
Sheared Seam/ Zone (Fault) SS/SZ Seam or zone with roughly parallel almost planar boundaries of rock substance cut by close spaced (often <50 mm) parallel and usually smooth or slickensided joints or cleavage plan									
Crushed Sea Zone (Fault)		CS/CZ	with roughly par		r bound	aries.			ts of the host rock substance ments may be of clay, silt,
Decompose Seam/ Zone		DS/DZ	Seam of soil su material in place	bstance, often w es.	ith grac	lation	al boundarie	s, forme	ed by weathering of the rock
Infilled Seam	า	IS	formed by soil n	nigrating into joir	nt or op	en ca	vity.		roughly parallel boundaries,
Schistocity		SH	of platy or prism	natic mineral gra	ins, suc	h as i	mica.		e to the parallel arrangement
Vein		VN	Distinct sheet-lil or crack-seal gr		rals crys	stallis	ed within roc	k throug	gh typically open-space filling
ABBREVIAT	IONS A	ND DES	CRIPTIONS FO	R DEFECT SHA	PE AN	D RO	UGHNESS		
Shape	Abbr.	Descri	ption	Roughness	Abbr.	Des	cription		
Planar	PI	Consis	stent orientation	Polished	Pol	Shir	ny smooth su	rface	
Curved	Cu	Gradu orienta	al change in ation	Slickensided	SL	Groo	oved or striat	ted surfa	ace, usually polished
Undulating	Un	Wavy	surface	Smooth	S	Smc	both to touch	. Few or	no surface irregularities
Stepped	St	define	r more well d steps	Rough	RF	<1m	m). Feels lik	e fine to	ularities (amplitude generall
Irregular	lr	in orie	sharp changes ntation	Very Rough	VR	>1m	m. Feels like	e very co	ularities, amplitude generally parse sandpaper
Drientation:			cal Boreholes – ned Boreholes –						the core axis.
ABBREVIATI	ONS A	ND DES	CRIPTIONS FOR	R DEFECT COA	TING	Ī	DEFECT A	PERTUR	RE
Coating	Abbr.	Descrip	otion				Aperture	Abbr.	Description
Clean	CN	No visib	le coating or infill	ing			Closed	CL	Closed.
Stain	SN	No visib	le coating but sur	faces are discol	oured b	у	Open	0	Without any infill material.
staining, often limonite (orange-brown) Soil or rock i.e. Veneer VNR A visible coating of soil or mineral substance, usually infilled Soil or rock i.e.								Soil or rock i.e. clay, talc, pyrite, quartz, etc.	

Geotechnical Investigation 3-7 Regent Street, 13-17 Regent Street & 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 GA, 24 May 2016

APPENDIX B

LABORATORY CERTIFICATES

		POINT LO	AD STRE	INGTH	INDEX	K RI	EPOR	Т	
Client:	Environmental Invest	igations		Moisture Content Condition:	As receive	d			
Address:	Suite 6.01, 55 Miller \$	Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes	6			
Project:	Trafalgar & Regent S	it, Petersham NSW (E22913)	Report No:	S9625-PL				
Job No:	S16101			Date Tested:	22/03/2016	6			
Test Proc	edure: 🗹	AS4133 4.1	Rock strength tests - Determina	tion of point load strength	index				
Sampling:		oy Client				Date	Sampled:		4-11/3/16
Preparatio	DR: Prepared i	n accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
50625		Louisito	Diametral	-	51.0	0.47	0.18	0.18	
S9625	BH1M 8.7m	Laminite	Axial	51.0	35.0	2.05	0.90	0.88	
			Diametral	-	51.0	0.23	0.09	0.09	
S9626	BH1M 9.2m	Laminite	Axial	51.0	29.0	1.75	0.93	0.87	
50627	DU1M 10.2m	Louisite	Diametral	-	52.0	0.13	0.05	0.05	
S9627	BH1M 10.2m	Laminite	Axial	52.0	46.0	3.79	1.24	1.30	
60620		Laurinita.	Diametral	-	51.0	1.07	0.41	0.42	
S9628	BH1M 11.1m	Laminite	Axial	51.0	32.0	2.70	1.30	1.25	
60620	DU414.4.2.0		Diametral	-	51.0	1.02	0.39	0.40	
S9629	BH1M 12.0m	Laminite	Axial	51.0	38.0	3.36	1.36	1.36	
50620	DU1M 12.0m	Louisite	Diametral	-	51.0	1.21	0.47	0.47	
S9630	BH1M 13.0m	Laminite	Axial	51.0	46.0	5.08	1.70	1.77	
S9631	DU1114.14.1m	Louisite	Diametral	-	51.0	1.65	0.63	0.64	
39031	BH1M 14.1m	Laminite	Axial	51.0	47.0	5.45	1.79	1.87	
Com	ments:								
NAT	document are trace	tests, calibrations and/or mea eable to Australian/national O/IEC 17025. This documer	standards. Accredited for	r	Authorised	Signato	ory:		23/03/2016
	NATA Accredi	ted Laboratory Numb	er: 14874		Chris Ll	oyd	·		Date:
GEO	QUARIE TECH								Macquarie Geotech Unit 8/10 Bradford Street Alexandria NSW

Client:	Environmental Invest	POINT LO		Moisture Content Condition:	As receive			•	
Address:	Suite 6.01, 55 Miller S	Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes				
Project:	Trafalgar & Regent S	it, Petersham NSW(E22913)	Report No:	S9632-PL				
Job No:	S16101			Date Tested:	22/03/2016	6			
est Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	tion of point load strength	index				
Sampling:						Date	Sampled:		4-11/3/16
Preparatio	Prepared i	n accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
S9632	BH2 5.9m	Shale	Diametral	-	48.0	0.02	0.01	0.01	
39032	вп2 5.911	Shale	Axial	48.0	13.0	0.13	0.16	0.13	
60622	DU2.6.0	Chala	Diametral	-	44.0	0.02	0.01	0.01	
S9633	BH2 6.9m	Shale	Axial	44.0	25.0	0.31	0.22	0.19	
6060 A	2012 7 0		Diametral	-	51.0	0.04	0.02	0.02	
S9634	BH2 7.9m	Laminite	Axial	51.0	47.0	1.37	0.45	0.47	
			Diametral	-	51.0	0.80	0.31	0.31	
S9635	BH2 8.8m	Laminite	Axial	51.0	36.0	1.95	0.83	0.82	
			Diametral	-	50.0	0.02	0.01	0.01	
S9636	BH2 9.4m	Laminite	Axial	50.0	22.0	0.95	0.68	0.60	
			Diametral	-	51.0	0.64	0.25	0.25	
S9637	BH2 10.4m	Laminite	Axial	51.0	25.0	2.69	1.66	1.50	
			Diametral	-	51.0	0.98	0.38	0.38	
S9638	BH2 11.4m	Laminite	Axial	51.0	41.0	1.62	0.61	0.62	
			Diametral	-	51.0	1.02	0.39	0.40	
S9639	BH2 12.0m	Laminite	Axial	51.0	29.0	1.79	0.95	0.89	
			Diametral	-	51.0	0.97	0.37	0.38	
S9640	BH2 13.0m	Laminite	Axial	51.0	44.0	1.12	0.39	0.40	
60644			Diametral	-	51.0	1.14	0.44	0.44	
S9641	BH2 14.1m	Laminite	Axial	51.0	42.0	1.99	0.73	0.74	
Comr	document are trac	tests, calibrations and/or mee eable to Australian/national O/IEC 17025. This documer	standards. Accredited for		Authorised	Signato	ory:		23/03/2016
	NATA Accredi	ted Laboratory Numb	er: 14874		Chris Ll	oyd			Date:
MACO GEO	QUARIE TECH								Macquarie Geot Unit 8/10 Bradford Street Alexandria NSW

		POINT LO	AD STRE	NGTH	INDE)	K RI	EPOR	Т	
Client:	Environmental Inves	stigations		Moisture Content Condition:	As received	d			
Address:	Suite 6.01, 55 Miller	r Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes	3			
Project:	Trafalgar & Regent \$	St, Petersham NSW (I	E22913)	Report No:	S9642-PL				
Job No:	S16101			Date Tested:	22/03/2016	3			
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determination	ion of point load strength	index				
Sampling:						Date	Sampled:		4-11/3/16
Preparatio	Dr: Prepared	d in accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
			Diametral	-	51.0	0.84	0.32	0.33	
S9642	BH2 15.1m	Laminite	Axial	51.0	43.0	4.89	1.75	1.80	
	ļ		ļ		ļ				
			ļ				ļ		
				T	T				
				1	<u> </u>				
				1					
				1	1				
				1					
	<u> </u>		L						
Comr	ments:								
NAT	The results of the tests, calibrations and/or measurements included in document are traceable to Australian/national standards. Accredited compliance with ISO/IEC 17025. This document shall not be reproduce except in full.				Authorised	Signato	əry:		23/03/2016
	NATA Accred	dited Laboratory Numbe	er: 14874		Chris Ll	oyd			Date:
MACO GEO	ACQUARIE BEOTECH Bradford Street Alexandria NSW								

Client:	Environmental Invest	POINT LO	Moisture Content Condition:	As receive			-		
Address:	Suite 6.01, 55 Miller \$	Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes				
Project:	Trafalgar & Regent S	it, Petersham NSW (E22913)	Report No:	S9643-PL				
Job No:	S16101			Date Tested:	22/03/2016	5			
Fest Proce	edure: 🗸	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling: Preparatio		by Client n accordance with the t	est method			Date	Sampled:		4-11/3/16
reparatio									
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
S9643	BH3 4.9m	Shale	Diametral	-	40.0	0.01	0.01	0.01	
		Jinic	Axial	40.0	16.0	0.01	0.01	0.01	
50644	DUD E Om	Chala	Diametral	-	30.0	0.04	0.04	0.04	
S9644	BH3 5.9m	Shale	Axial	30.0	25.0	0.02	0.02	0.02	
coc 47			Diametral	-	36.0	0.03	0.02	0.02	
S9645	BH3 6.6m	Shale	Axial	36.0	26.0	0.03	0.03	0.02	
			Diametral	-	51.0	0.17	0.07	0.07	
S9646	BH3 7.5m	Shale	Axial	51.0	47.0	0.63	0.21	0.22	
			Diametral	-	50.0	0.18	0.07	0.07	
S9647	BH3 8.4m	Laminite	Axial	50.0	17.0	0.86	0.79	0.66	
			Diametral	-	51.0	0.03	0.01	0.01	
S9648	BH3 9.4m	Laminite	Axial	51.0	21.0	0.53	0.39	0.34	
			Diametral	-	51.0	0.06	0.02	0.02	
S9649	BH3 10.4m	Laminite	Axial	51.0	32.0	2.65	1.28	1.22	
			Diametral	-	50.0	0.44	0.18	0.18	
S9650	BH3 11.5m	Laminite	Axial	50.0	31.0	2.96	1.50	1.42	
			Diametral	-	50.0	0.28	0.11	0.11	
S9651	BH3 12.1m	Laminite	Axial	50.0	32.0	1.52	0.75	0.71	
			Diametral	-	45.0	0.14	0.07	0.07	
S9652	BH3 12.8m	Laminite	Axial	45.0	43.0	0.14	0.07	0.07	
Comr	document are trac	tests, calibrations and/or mea eable to Australian/national O/IEC 17025. This documer	asurements included in this standards. Accredited for		Authorised				23/03/2016
	NATA Accredi	ted Laboratory Numb	er: 14874		Chris Ll	oyd			Date:
MACO GEO	QUARIE TECH					-			Macquarie Geo Unit 8/10 Bradford Street Alexandria NSV

		POINT LO	AD STRE	NGTH	INDE	X RI	EPOR	Т	
Client:	Environmental Invest			Moisture Content Condition:	As receive				
Address:	Suite 6.01, 55 Miller	Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes	3			
Project:	Trafalgar & Regent S	St, Petersham NSW(E22913)	Report No:	S9653-PL				
Job No:	S16101			Date Tested:	23/03/2016	6			
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling:		-				Date	Sampled:		4-11/3/16
Preparatio	on: Prepared	in accordance with the	test method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
60650			Diametral	-	51.0	0.60	0.23	0.23	
S9653	BH3 13.2m	Shale	Axial	51.0	40.0	1.11	0.43	0.43	
			Diametral	-	51.0	1.00	0.38	0.39	
S9654	BH3 14.1m	Shale	Axial	51.0	36.0	4.11	1.76	1.73	
00055	DUD 45 4		Diametral	-	51.0	0.85	0.33	0.33	
S9655	BH3 15.1m	Shale	Axial	51.0	44.0	3.96	1.39	1.43	
			Diametral	-	51.0	0.40	0.15	0.16	
S9656	BH3 16.0m	Shale	Axial	51.0	47.0	1.77	0.58	0.61	
	DUD 10.0		Diametral	-	51.0	0.16	0.06	0.06	
S9657	BH3 16.9m	Shale	Axial	51.0	32.0	2.67	1.28	1.23	
Comr	nents:								
NAT	document are trac compliance with IS except in full.	tests, calibrations and/or mea eable to Australian/national SO/IEC 17025. This documer	standards. Accredited for nt shall not be reproduced,		Authorised	Q	ory:		23/03/2016
		ited Laboratory Numb	er: 14874		Chris Ll	oyd			Date:
GEO									Macquarie Geotech Unit 8/10 Bradford Street Alexandria NSW

Client:	Environmental Investi	POINT LO		Moisture Content Condition:	As receive				
Address:	Suite 6.01, 55 Miller S	Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes				
Project:	Trafalgar & Regent S	t, Petersham NSW (E22913)	Report No:	S9658-PL				
Job No:	S16101			Date Tested:	22/03/2016	;			
est Proce	edure: 🗹	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling: Preparatio		y Client n accordance with the t	act mathed			Date	Sampled:		4-11/3/16
reparatio			estmethod						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
S9658	BH4M 5.8m	Shale	Diametral	-	48.0	0.02	0.01	0.01	
39038	вп4ій 5.611	Slidle	Axial	48.0	10.0	0.14	0.22	0.16	
60650		Chala	Diametral	-	46.0	0.38	0.18	0.17	
S9659	BH4M 6.3m	Shale	Axial	46.0	27.0	0.42	0.27	0.24	
			Diametral	-	52.0	0.02	0.01	0.01	
S9660	BH4M 7.3m	Shale	Axial	52.0	22.0	0.28	0.19	0.17	
			Diametral	-	51.0	0.34	0.13	0.13	
S9661	BH4M 8.1m	Shale	Axial	51.0	38.0	0.61	0.25	0.25	
			Diametral	-	51.0	0.02	0.01	0.01	
S9662	BH4M 8.7m	Shale	Axial	51.0	23.0	0.33	0.22	0.20	
			Diametral	_	51.0	0.11	0.04	0.04	
S9663	BH4M 9.0m	Shale	Axial	51.0	32.0	1.17	0.56	0.54	
			Diametral	_	51.0	0.02	0.01	0.01	
S9664	BH4M 10.0m	Shale	Axial	51.0	20.0	0.79	0.61	0.52	
			Diametral	_	52.0	0.02	0.01	0.01	
S9665	BH4M 11.1m	Shale	Axial	52.0	11.0	0.41	0.56	0.43	
			Diametral	-	51.0	0.24	0.09	0.09	
S9666	BH4M 12.1m	Shale	Axial	51.0	33.0	1.40	0.65	0.63	
			Diametral	-	51.0	0.45	0.05	0.03	
S9667	BH4M 13.1m	Shale	Axial	51.0	45.0	2.23	0.17	0.17	
Comr	nents:				Authorised			0.73	
NAT	document are trace	ests, calibrations and/or mea able to Australian/national D/IEC 17025. This documer	standards. Accredited for		5	2	лу.		23/03/2016
		ed Laboratory Numb	er: 14874		Chris Ll	oyd			Date:
MACO GEO	QUARIE TECH								Macquarie Geo Unit 8/10 Bradford Street Alexandria NSV

		POINT LC	AD STRE	NGTH	INDEX	X RI	EPOR	Т	
Client:	Environmental Invest	igations		Moisture Content Condition:	As receive	d			
Address:	Suite 6.01, 55 Miller \$	Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes	6			
Project:	Trafalgar & Regent S	it, Petersham NSW (E22913)	Report No:	S9668-PL				
Job No:	S16101			Date Tested:	22/03/2016	3			
Test Proce	edure: 🗹	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling:	· · · ·	-				Date	Sampled:		4-11/3/16
Preparatio	on: Prepared i	n accordance with the	test method						
Sample Number	Sample Source	Sample Description	Test Type	Test Type Average Width (mm) Platen Failure Point Load Index Is (mm) (kN) (MPa)				Point Load Index Is ₍₅₀₎ (MPa)	Notes
			Diametral	-	51.0	0.54	0.21	0.21	
S9668	BH4M 14.1m	Shale	Axial	51.0	31.0	4.20	2.09	1.99	
			Diametral	-	51.0	0.30	0.12	0.12	
S9669	BH4M 15.1m	Shale	Axial	51.0	25.0	3.15	1.94	1.76	
6	l						I		I
Comr	nents:								
NAT	document are track	tests, calibrations and/or me eable to Australian/national O/IEC 17025. This documer	standards. Accredited for		Authorised	Signato	ory:		23/03/2016
	NATA Accredi	ted Laboratory Numb	er: 14874		Chris Ll	oyd	·		Date:
MACO GEO	QUARIE TECH								Macquarie Geotechr Unit 8/10 Bradford Street

Client:	Environmental Invest	POINT LO		Moisture Content Condition:	As receive					
Address:	Suite 6.01, 55 Miller \$	Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes					
Project:	Trafalgar & Regent S	t, Petersham NSW(E22913)	Report No:	S9670-PL					
Job No:	S16101			Date Tested:	22/03/2016	5				
est Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index					
Sampling:						Date	Sampled:		4-11/3/16	
Preparatio	on: Prepared I	n accordance with the t	lest method							
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
S9670	BH5 5.7m	Shale	Diametral	-	49.0	0.04	0.02	0.02		
39070	603 5.711	Silale	Axial	49.0	12.0	0.18	0.24	0.18		
60674		Chala	Diametral	-	48.0	0.03	0.01	0.01		
S9671	BH5 6.6m	Shale	Axial	48.0	25.0	0.12	0.08	0.07		
00070	DUE 7.6		Diametral	-	50.0	0.28	0.11	0.11		
S9672	BH5 7.6m	Shale	Axial	50.0	37.0	0.51	0.22	0.21		
			Diametral	-	50.0	0.05	0.02	0.02		
S9673	BH5 8.4m	Shale	Axial	50.0	26.0	0.47	0.28	0.26		
			Diametral	-	51.0	0.18	0.07	0.07		
S9674	BH5 9.4m	Shale	Axial	51.0	28.0	0.50	0.27	0.26		
			Diametral	-	51.0	0.13	0.05	0.05		
S9675	BH5 10.3m	Shale	Axial	51.0	14.0	0.59	0.65	0.52		
			Diametral	-	51.0	0.03	0.01	0.01		
S9676	BH5 11.3m	Shale	Axial	51.0	32.0	0.19	0.09	0.09		
			Diametral	_	50.0	0.01	0.00	0.00		
S9677	BH5 12.3m	Shale	Axial	50.0	18.0	0.98	0.86	0.72		
			Diametral	_	51.0	0.36	0.14	0.14		
S9678	BH5 13.3m	Shale	Axial	51.0	42.0	1.96	0.72	0.73		
			Diametral	-	51.0	0.15	0.06	0.06		
S9679	BH5 14.3m	Shale	Axial	51.0	38.0	1.85	0.75	0.75		
Comn	document are trac	tests, calibrations and/or mea eable to Australian/national	standards. Accredited for	1	Authorised	Signato	bry:	<u>.</u>		
compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.						Ļ			23/03/2016	
MACO		ted Laboratory Numb	er: 14874		Chris Ll	oyd			Date: Macquarie Geo Unit 8/10 Bradford Street	

			AD STRE	NGTH	INDEX	X RI	EPOR	Т		
Client:	Environmental Invest	igations		Moisture Content Condition:	As receive	d				
Address:	Suite 6.01, 55 Miller \$	Street, Pyrmont, NS\	V 2009	Storage History:	Core boxes	8				
Project:	Trafalgar & Regent S	t, Petersham NSW (E22913)	Report No:	S9680-PL	S9680-PL				
Job No:	S16101			Date Tested:	22/03/2016					
Test Proce	edure: 🗹	AS4133 4.1	Rock strength tests - Determinati	on of point load strength	index					
Sampling:		-				Date	Sampled:		4-11/3/16	
Preparatio	on: Prepared i	n accordance with the	test method							
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
S9680	BH5 15.3m	Shale	Diametral	-	51.0	0.03	0.01	0.01		
39080	впо 15.311	Shale	Axial	51.0	16.0	0.53	0.51	0.42		
60601		Chala	Diametral	-	51.0	0.04	0.02	0.02		
S9681	BH5 16.3m	Shale	Axial	51.0	44.0	0.24	0.08	0.09		
60600		Chala	Diametral	-	50.0	0.04	0.02	0.02		
S9682	BH5 17.1m	Shale	Axial	50.0	36.0	0.21	0.09	0.09		
Comr	ments:									
NAT	document are trace	asurements included in this standards. Accredited for nt shall not be reproduced,		Authorised	Signato	ory:		23/03/2016		
	NATA Accredi	ted Laboratory Numb	er: 14874		Chris Ll	oyd			Date:	
MACO GEO									Macquarie Geotechr Unit 8/10 Bradford Street Alexandria NSW	

ar & Regent St, ☑ Sampled by			Storage History: Report No:	Core boxes S9683-PL	5						
Sampled by	AS4133 4.1	E22913)		S9683-PL							
✓ Sampled by						S9683-PL					
Sampled by			Date Tested:	22/03/2016							
		Rock strength tests - Determina	tion of point load strength	index							
i iepaieu iii	Client accordance with the t	est method			Date	Sampled:		4-11/3/16			
Sample Sample Sample Sample Description Test Type Average Width Sampering Load Index to Description Nation											
mple Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes			
H7 8 2m	Shale	Diametral	-	34.0	0.25	0.22	0.18				
	onaic	Axial	34.0	19.0	0.20	0.24	0.19				
117.0.2m	Louinito	Diametral	-	50.0	0.11	0.04	0.04				
n7 9.211)	Laminite	Axial	50.0	30.0	0.21	0.11	0.10				
		Diametral	-	41.0	0.02	0.01	0.01				
H7 9.8m	Shale	Axial	41.0	24.0	0.03	0.02	0.02				
DUZ 10 Fm Chala		Diametral	-	41.0	0.03	0.02	0.02				
H7 10.5m	Shale	Axial	41.0	44.0	0.03	0.01	0.01				
		Diametral	-	51.0	0.30	0.12	0.12				
H7 11.3m	Shale	Axial	51.0	30.0	0.28	0.14	0.14				
		Diametral	-	50.0	0.24	0.10	0.10				
H7 12.0m	Laminite	Axial	50.0	19.0	0.56	0.46	0.39				
		Diametral	-	51.0	0.50	0.19	0.19				
H7 12.8m	Laminite	Axial	51.0	44.0	0.87	0.30	0.31				
		Diametral	-	51.0	0.07	0.03	0.03				
H7 13.3m	Laminite	Axial	51.0	24.0	0.62	0.40	0.36				
		Diametral	-	50.0	0.34	0.14	0.14				
H7 14.3m	Shale	Axial	50.0	27.0	2.25	1.31	1.20				
		Diametral	-	50.0	0.53	0.21	0.21				
H7 15.3m	Shale	Axial	50.0	32.0	0.44	0.22	0.21				
	17 11.3m 17 12.0m 17 12.8m 17 13.3m 17 14.3m	H7 9.2m Laminite H7 9.8m Shale H7 10.5m Shale H7 11.3m Shale H7 12.0m Laminite H7 12.8m Laminite H7 13.3m Laminite H7 14.3m Shale	H7 8.2mShaleAxialH7 9.2mLaminiteDiametralH7 9.2mLaminiteDiametralH7 9.8mShaleDiametralH7 9.8mShaleDiametralH7 9.8mShaleDiametralH7 10.5mShaleDiametralH7 10.5mShaleDiametralH7 11.3mShaleDiametralH7 11.3mShaleDiametralH7 12.0mLaminiteDiametralH7 12.8mLaminiteDiametralH7 12.8mLaminiteDiametralH7 13.3mLaminiteDiametralH7 14.3mShaleDiametralH7 15.3mShaleDiametralH7 15.3mShaleDiametral	H7 8.2m Shale Axial 34.0 H7 9.2m Laminite Diametral - H7 9.2m Laminite Diametral - H7 9.2m $Axial$ 50.0 - H7 9.2m $Axial$ 50.0 - H7 9.8m $Axial$ 41.0 - H7 9.8m Shale Diametral - H7 10.5m Shale Diametral - H7 10.5m Shale Diametral - H7 11.3m Shale Diametral - H7 12.0m Laminite Diametral - H7 12.0m Laminite Diametral - H7 12.8m Laminite Diametral - H7 12.8m Laminite Axial 50.0 H7 13.3m Laminite Diametral - H7 14.3m Shale Diametral - H7 14.3m Shale Diametral - H7 15.3m Shale Diametral -	H7 8.2m Shale Axial 34.0 19.0 H7 9.2m Laminite Diametral - 50.0 H7 9.2m Laminite Diametral - 41.0 H7 9.2m Shale Diametral - 41.0 H7 9.8m Shale Diametral - 41.0 H7 9.8m Shale Diametral - 41.0 47 10.5m Shale Diametral - 41.0 47 10.5m Shale Diametral - 41.0 47 11.3m Shale Diametral - 51.0 47 11.3m Shale Diametral - 51.0 47 12.0m Laminite Diametral - 50.0 47 12.8m Laminite Diametral - 51.0 47 12.8m Laminite Diametral - 51.0 47 13.3m Laminite Diametral - 51.0 47 14.3m Shale Diametral - 50.0 47 14.3m Shale Diametral - 50.0 <t< td=""><td>H7 8.2m Shale Axial 34.0 10.0 0.20 H7 9.2m Laminite Diametral - 50.0 0.11 H7 9.2m Laminite Diametral - 50.0 0.11 H7 9.2m Laminite Diametral - 41.0 0.02 H7 9.2m Shale Diametral - 41.0 0.03 H7 10.5m Shale Diametral - 41.0 0.03 H7 11.3m Shale Diametral - 51.0 0.30 H7 12.0m Laminite Diametral - 50.0 0.24 H7 12.8m Laminite Diametral - 51.0 0.50 H7 13.3m Laminite Diametral - 51.0</td><td>H7 8.2m Shale Axial 34.0 19.0 0.20 0.24 H7 9.2m $Laminite$ Diametral - 50.0 0.11 0.04 H7 9.2m $Laminite$ Diametral - 50.0 0.21 0.11 H7 9.2m $Laminite$ Diametral - 41.0 0.02 0.01 H7 9.2m $Shale$ Diametral - 41.0 0.03 0.02 H7 9.8m $Shale$ Diametral - 41.0 0.03 0.02 H7 10.5m $Shale$ Diametral - 41.0 0.03 0.02 H7 11.3m $Shale$ Diametral - 51.0 0.30 0.12 H7 12.0m $Laminite$ Diametral - 50.0 0.24 0.10 H7 12.8m $Laminite$ Diametral - 51.0 0.50 0.19 H7 12.8m $Laminite$ Diametral - 51.0 0.62 0.40 H7 13.3m</td></t<> <td>H7 8.2m Shale Axial 34.0 19.0 0.20 0.24 0.19 H7 9.2m Laminite Diametral - 50.0 0.11 0.04 0.04 H7 9.2m Laminite Axial 50.0 30.0 0.21 0.11 0.10 H7 9.2m Shale Diametral - 41.0 0.02 0.01 0.01 H7 9.8m Shale Diametral - 41.0 0.02 0.01 0.01 H7 9.8m Shale Diametral - 41.0 0.03 0.02 0.02 H7 10.5m Shale Diametral - 41.0 0.03 0.01 0.01 H7 11.3m Shale Diametral - 51.0 0.30 0.12 0.12 H7 12.0m Laminite Diametral - 51.0 0.30 0.21 0.10 H7 12.8m Laminite Diametral - 51.0 0.56 0.46 0.39 <t< td=""></t<></td>	H7 8.2m Shale Axial 34.0 10.0 0.20 H7 9.2m Laminite Diametral - 50.0 0.11 H7 9.2m Laminite Diametral - 50.0 0.11 H7 9.2m Laminite Diametral - 41.0 0.02 H7 9.2m Shale Diametral - 41.0 0.03 H7 10.5m Shale Diametral - 41.0 0.03 H7 11.3m Shale Diametral - 51.0 0.30 H7 12.0m Laminite Diametral - 50.0 0.24 H7 12.8m Laminite Diametral - 51.0 0.50 H7 13.3m Laminite Diametral - 51.0	H7 8.2m Shale Axial 34.0 19.0 0.20 0.24 H7 9.2m $Laminite$ Diametral - 50.0 0.11 0.04 H7 9.2m $Laminite$ Diametral - 50.0 0.21 0.11 H7 9.2m $Laminite$ Diametral - 41.0 0.02 0.01 H7 9.2m $Shale$ Diametral - 41.0 0.03 0.02 H7 9.8m $Shale$ Diametral - 41.0 0.03 0.02 H7 10.5m $Shale$ Diametral - 41.0 0.03 0.02 H7 11.3m $Shale$ Diametral - 51.0 0.30 0.12 H7 12.0m $Laminite$ Diametral - 50.0 0.24 0.10 H7 12.8m $Laminite$ Diametral - 51.0 0.50 0.19 H7 12.8m $Laminite$ Diametral - 51.0 0.62 0.40 H7 13.3m	H7 8.2m Shale Axial 34.0 19.0 0.20 0.24 0.19 H7 9.2m Laminite Diametral - 50.0 0.11 0.04 0.04 H7 9.2m Laminite Axial 50.0 30.0 0.21 0.11 0.10 H7 9.2m Shale Diametral - 41.0 0.02 0.01 0.01 H7 9.8m Shale Diametral - 41.0 0.02 0.01 0.01 H7 9.8m Shale Diametral - 41.0 0.03 0.02 0.02 H7 10.5m Shale Diametral - 41.0 0.03 0.01 0.01 H7 11.3m Shale Diametral - 51.0 0.30 0.12 0.12 H7 12.0m Laminite Diametral - 51.0 0.30 0.21 0.10 H7 12.8m Laminite Diametral - 51.0 0.56 0.46 0.39 <t< td=""></t<>			

			AD STRE	NGTH	INDEX	X RI	EPOR	Т		
Client:	Environmental Invest	igations		Moisture Content Condition:	As receive	d				
Address:	Suite 6.01, 55 Miller \$	Street, Pyrmont, NS\	V 2009	Storage History:	Core boxes	8				
Project:	Trafalgar & Regent S	t, Petersham NSW (E22913)	Report No:	S9693-PL					
Job No:	S16101			Date Tested:	22/03/2016	22/03/2016				
Test Proce	edure: 🗹	AS4133 4.1	Rock strength tests - Determinati	on of point load strength	index					
Sampling:		-				Date	Sampled:		4-11/3/16	
Preparatio	on: Prepared i	n accordance with the	test method							
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
S9693	BH7 15.6m	Shale	Diametral	-	51.0	0.75	0.29	0.29		
39093	вп/ 15.011	Silale	Axial	51.0	51.0	2.32	0.70	0.75		
S9694	BH7 16.3m	Shale	Diametral	-	51.0	1.09	0.42	0.42		
39094	BH7 10.3III	Shale	Axial	51.0	45.0	2.60	0.89	0.92		
S9695	BH7 16.9m	Shale	Diametral	-	51.0	0.94	0.36	0.36		
39095	BH7 10.911	Shale	Axial	51.0	42.0	2.59	0.95	0.97		
	_									
Comr	ments:									
NAT	The results of the t document are trac compliance with IS except in full.		Authorised	Signato	ory:		23/03/2016			
	NATA Accredi	ted Laboratory Numb	er: 14874		Chris Ll	oyd			Date:	
MACO GEO									Macquarie Geotechr Unit 8/10 Bradford Street Alexandria NSW	

		POINT LO	AD STRE	NGTH	INDEX	X RI	EPOR	Т		
Client:	Environmental Invest	tigations		Moisture Content Condition:	As receive	d				
Address:	Suite 6.01, 55 Miller	Street, Pyrmont, NSV	√ 2009	Storage History:	Core boxes	6				
Project:	Fisher & Regent St, I	Petersham (E22913)		Report No:	S10568-PL					
Job No:	S16133			Date Tested:	13/04/2016	3				
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index					
Sampling:		Sampled:		5/04/2016						
Preparatio	on: Prepared	in accordance with the t	est method							
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
610568	BUD 6 7	Shala	Diametral	-	40.0	0.41	0.26	0.23		
S10568	BH8 6.7m	Shale	Axial	40.0	34.0	0.09	0.05	0.05		
			Diametral	-	49.0	0.02	0.01	0.01		
S10569	BH8 7.05m	Shale	Axial	49.0	25.0	0.15	0.10	0.09		
640570	DU0 7.0m		Diametral	-	50.0	0.02	0.01	0.01		
S10570	BH8 7.8m	Shale	Axial	50.0	12.0	0.09	0.12	0.09		
S10571	BH8 8.05m	Shale	Diametral	-	50.0	0.02	0.01	0.01		
510571	600 8.00111	Shale	Axial	50.0	19.0	0.09	0.07	0.06		
S10572	BH8 8.65m	Shale	Diametral	-	49.0	0.76	0.32	0.31		
310372	0.0011	Silale	Axial	49.0	33.0	0.44	0.21	0.20		
S10573	BH8 9.55m	Shale	Diametral	-	50.0	0.03	0.01	0.01		
310373	9.55III	Shale	Axial	50.0	22.0	0.27	0.19	0.17		
Comr	nents:									
NAT	document are trac	tests, calibrations and/or mea ceable to Australian/national SO/IEC 17025. This documen	standards. Accredited for			Signato	ory:		13/04/2016	
	NATA Accred	ited Laboratory Numbe	er: 14874		Chris Ll	oyd			Date:	
GEO	QUARIE TECH								Macquarie Geotechr Unit 8/10 Bradford Street Alexandria NSW	

		POINT LO	AD STRE	NGTH	INDEX	K RI	EPOR	Т	
Client:	Environmental Investi	gations		Moisture Content Condition:	As receive	d			
Address:	Suite 6.01, 55 Miller S	Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes	6			
Project:	Trafalgar & Regent St	t, Petersham NSW (E22913)	Report No:	S9696-PL				
Job No:	S16101			Date Tested:	22/03/2016	5			
Test Proce	edure: 🗸	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling:			toot mothod			Date	Sampled:		4-11/3/16
Preparatio	SII: Prepared II	accordance with the	lest method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
S9696	BH9M 4.6m	Shale	Diametral	-	45.0	0.03	0.01	0.01	
39090	619101 4.011	Shale	Axial	45.0	32.0	0.03	0.02	0.02	
60607		Chala	Diametral	-	50.0	0.02	0.01	0.01	
S9697	BH9M 5.5m	Shale	Axial	50.0	26.0	0.05	0.03	0.03	
50608		Cholo	Diametral	-	50.0	0.02	0.01	0.01	
S9698	BH9M 6.8m	Shale	Axial	50.0	21.0	0.06	0.04	0.04	
60.600	BH9M 7.6m Shale		Diametral	-	50.0	0.04	0.02	0.02	
S9699	BH9IVI 7.6m	Shale	Axial	50.0	10.0	0.22	0.35	0.25	
60700			Diametral	-	50.0	0.15	0.06	0.06	
S9700	BH9M 8.6m	Shale	Axial	50.0	43.0	0.55	0.20	0.21	
60701			Diametral	-	50.0	0.11	0.04	0.04	
S9701	BH9M 9.5m	Shale	Axial	50.0	36.0	0.66	0.29	0.28	
co700			Diametral	-	52.0	0.02	0.01	0.01	
S9702	BH9M 10.6m	Shale	Axial	52.0	42.0	0.53	0.19	0.20	
60700		Chala	Diametral	-	49.0	0.62	0.26	0.26	
S9703	BH9M 11.5m	Shale	Axial	49.0	20.0	0.78	0.63	0.53	
60704		Chala	Diametral	-	50.0	0.30	0.12	0.12	
S9704	BH9M 12.5m	Shale	Axial	50.0	41.0	0.54	0.21	0.21	
Com						1			
Com	ments:								
					Authorised	Signate	orv:		
NAT	document are trace	ests, calibrations and/or mea able to Australian/national D/IEC 17025. This documer	standards. Accredited for		5		;-		23/03/2016
	NATA Accredit	ed Laboratory Numb	er: 14874		Chris Ll	oyd			Date:
MACO GEO	QUARIE DTECH								Macquarie Geotech Unit 8/10 Bradford Street Alexandria NSW

Client:	Environmental Investi	POINT LO		Moisture Content Condition:	As receive					
Address:	Suite 6.01, 55 Miller S	Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes					
Project:	Trafalgar & Regent Si	t, Petersham NSW (E22913)	Report No:	S9705-PL					
Job No:	S16101			Date Tested:	22/03/2016	6				
est Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index					
Sampling:						Date	Sampled:		4-11/3/16	
Preparatio	n: Prepared Ir	n accordance with the t	est method							
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
S9705		Mudstone	Diametral	-	37.0	0.04	0.03	0.03		
39705	BH10M 2.5m	windstone	Axial	37.0	35.0	0.08	0.05	0.04		
co			Diametral	-	47.0	0.02	0.01	0.01		
S9706	BH10M 3.5m	Shale	Axial	47.0	31.0	0.05	0.03	0.03		
co=c=			Diametral	-	45.0	0.04	0.02	0.02		
S9707	BH10M 4.6m	Shale	Axial	45.0	27.0	0.03	0.02	0.02		
			Diametral	-	42.0	0.17	0.10	0.09		
S9708	BH10M 5.6m	Shale	Axial	42.0	23.0	0.15	0.12	0.10		
			Diametral	-	50.0	0.04	0.02	0.02		
S9709	BH10M 6.4m	Shale	Axial	50.0	34.0	0.43	0.20	0.19		
			Diametral	-	50.0	0.44	0.18	0.18		
S9710	BH10M 7.4m	Shale	Axial	50.0	23.0	2.59	1.77	1.57		
			Diametral	-	50.0	0.04	0.02	0.02		
S9711	BH10M 8.5m	Shale	Axial	50.0	24.0	0.28	0.18	0.16		
			Diametral	-	50.0	0.20	0.08	0.08		
S9712	BH10M 9.5m	Shale	Axial	50.0	16.0	0.45	0.44	0.36		
			Diametral	-	50.0	0.17	0.07	0.07		
S9713	BH10M 10.6m	Shale	Axial	50.0	37.0	0.39	0.17	0.16		
			Diametral	-	50.0	0.04	0.02	0.02		
S9714	BH10M 11.6m	Shale	Axial	50.0	20.0	0.26	0.20	0.18		
Comr	document are trace	ests, calibrations and/or mea able to Australian/national D/IEC 17025. This documer	standards. Accredited for		Authorised	Signato	Dry:		23/03/2016	
	NATA Accredit	ed Laboratory Numb	er: 14874		Chris Ll	oyd	1		Date:	
MACO GEO	QUARIE TECH								Macquarie Ge Unit 8/10 Bradford Stree Alexandria NS	

		POINT LO	AD STRE	NGTH	INDEX	K RI	EPOR	Т	
Client:	Environmental Investi	gations		Moisture Content Condition:	As receive	d			
Address:	Suite 6.01, 55 Miller S	Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes	6			
Project:	Trafalgar & Regent S	t, Petersham NSW (E22913)	Report No:	S9715-PL				
Job No:	S16101			Date Tested:	22/03/2016	;			
Test Proce	edure: 🗸	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling:						Date	Sampled:		4-11/3/16
Preparatio	on: Prepared in	n accordance with the	test method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
60715	DU400442 5	Chala	Diametral	-	50.0	0.27	0.11	0.11	
S9715	BH10M 12.5m	Shale	Axial	50.0	39.0	1.02	0.41	0.41	
			Diametral	-	50.0	0.17	0.07	0.07	
S9716	BH10M 13.6m	Shale	Axial	50.0	20.0	1.06	0.83	0.72	
60717			Diametral	-	50.0	0.43	0.17	0.17	
S9717	BH10M 14.6m	Shale	Axial	50.0	24.0	0.77	0.50	0.45	
60740			Diametral	-	50.0	0.39	0.16	0.16	
S9718	BH10M 15.6m	Shale	Axial	50.0	32.0	0.61	0.30	0.29	
Comr	ments:								
NAT	The results of the to document are trace compliance with ISG except in full.			Q	ory:		23/03/2016		
		ed Laboratory Numb	er: 14874		Chris Ll	oyd			Date:
GEO	QUARIE								Macquarie Geotechr Unit 8/10 Bradford Street Alexandria NSW

Client:	Environmental Investi	POINT LO		Moisture Content Condition:	As received					
Address:	Suite 6.01, 55 Miller S	Street, Pyrmont, NSV	V 2009	Storage History:	Core boxes					
Project:	Trafalgar & Regent St	, Petersham NSW (E22913)	Report No:	S9719-PL					
Job No:	S16101			Date Tested:	22/03/2016	;				
est Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index					
Sampling:			and an address of			Date	Sampled:		4-11/3/16	
Preparatio	n: Prepared in	accordance with the t	est method							
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
60710		Chala	Diametral	-	40.0	0.06	0.04	0.03		
S9719	BH11M 4.6m	Shale	Axial	40.0	28.0	0.07	0.05	0.04		
			Diametral	-	33.0	0.15	0.14	0.11		
S9720	BH11M 5.5m	Shale	Axial	33.0	33.0	0.08	0.06	0.05		
			Diametral	-	22.0	0.16	0.33	0.23		
S9721	BH11M 6.5m	Shale	Axial	22.0	29.0	0.10	0.12	0.10		
			Diametral	-	33.0	0.15	0.14	0.11		
S9722	BH11M 7.6m	Shale	Axial	33.0	34.0	0.13	0.09	0.08		
			Diametral	-	42.0	0.03	0.02	0.02		
S9723	BH11M 8.6m	Shale	Axial	42.0	34.0	0.07	0.04	0.04		
60 - 5	D		Diametral	-	41.0	0.70	0.42	0.38		
S9724	BH11M 9.2m	Shale	Axial	41.0	30.0	0.30	0.19	0.17		
50725		Ch - I	Diametral	-	51.0	0.03	0.01	0.01		
S9726	BH11M 11.1m	Shale	Axial	51.0	27.0	0.38	0.22	0.20		
S9727	BH11M 12 2m	Chalo	Diametral	-	50.0	0.60	0.24	0.24		
37/2/	BH11M 12.3m	Shale	Axial	50.0	38.0	0.47	0.19	0.19		
S9728	BH11M 13.5m	Shale	Diametral	-	49.0	0.07	0.03	0.03		
33128	13.311	Sildle	Axial	49.0	18.0	1.22	1.09	0.91		
50720		Chalc	Diametral	-	50.0	0.01	0.00	0.00		
S9729	BH11M 14.3m	Shale	Axial	50.0	23.0	0.50	0.34	0.30		
Comm	document are trace compliance with ISC except in full.	ests, calibrations and/or mea able to Australian/national D/IEC 17025. This documer	standards. Accredited for t shall not be reproduced,		Authorised	Q	pry:		23/03/2016	
MACO GEO		ed Laboratory Numb	er: 14874		Chris Ll	oyd			Date: Macquarie Geot Unit 8/10 Bradford Street Alexandria NSW	

	ſ	POINT LO	AD STRE	NGTH	INDE)	K RF	EPOR	Т		
Client:	Environmental Investi	igations		Moisture Content Condition:	As received	d				
Address:	Suite 6.01, 55 Miller S	Street, Pyrmont, NSV	N 2009	Storage History:	Core boxes	3				
Project:	Trafalgar & Regent St	t, Petersham NSW (E22913)	Report No:	S9729-PL					
Job No:	S16101			Date Tested:	22/03/2016	3				
Test Proce	edure: 🗹	AS4133 4.1	Rock strength tests - Determination	ion of point load strength	index					
Sampling:		-				Date	Sampled:		4-11/3/16	
Preparatio	n: Prepared in	n accordance with the t	lest method							
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
			Diametral	-	51.0	0.09	0.03	0.03		
S9730	BH11M 15.5m	Shale	Axial	51.0	32.0	0.76	0.37	0.35		
				<u> </u>						
	ļ	!	ļ	_						
	_		ļ		ļ		 			
		1								
		+ +								
				-						
		+ +		+						
		+ +								
	+	++		1						
		+								
			<u> </u>				<u> </u>			
Comr	ments:									
NAT	document are trace	tests, calibrations and/or mea eable to Australian/national :O/IEC 17025. This documen	standards. Accredited for		Authorised	Signato	ory:		23/03/2016	
	NATA Accredit	ted Laboratory Numb	er: 14874		Chris Ll	oyd			Date:	
GEO	NATA Accredited Laboratory Number: 14874 Chris Lloyd Macquarie Geotechn Unit 8/10 Bradford Street Alexandra NSW									
		POINT LO	AD STRE	NGTH	INDEX	X RI	EPOR	Т		
------------------	--	---	----------------------------------	-----------------------------------	------------------------------	-------------------------	---------------------------------	---	--	
Client:	Environmental Investi	gations		Moisture Content Condition:	As receive	d				
Address:	s: Suite 6.01, 55 Miller Street, Pyrmont, NSW 2009		Storage History:	Core boxes	6					
Project:	Trafalgar & Regent St	t, Petersham NSW (E22913)	Report No:	S9731-PL					
Job No:	S16101			Date Tested:	22/03/2016	6				
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index					
Sampling:		y Client				Date	Sampled:		4-11/3/16	
Preparatio	DR: Prepared in	accordance with the	test method							
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
S9731	BH15M 5.6m	Shale	Diametral	-	32.0	0.06	0.06	0.05		
55751	BITISW S.OH	Share	Axial	32.0	35.0	0.09	0.06	0.06		
S9732	BH15M 6.3m	Shale	Diametral	-	18.0	0.03	0.09	0.06		
33732	BITISW 0.5III	Share	Axial	18.0	20.0	0.03	0.07	0.04		
S9733	BH15M 7.3m	Shale	Diametral	-	13.0	0.04	0.24	0.13		
33733	BITTSIN 7.5III	Share	Axial	13.0	15.0	0.04	0.16	0.10		
\$0724		Laminito	Diametral	-	51.0	1.64	0.63	0.64		
59754	S9734 BH15M 8.5m Laminite	Axial	51.0	43.0	6.80	2.44	2.50			
S9735	BH15M 9.4m	H15M 9.4m Laminite	Diametral	-	51.0	0.85	0.33	0.33		
39733			Axial	51.0	37.0	6.19	2.58	2.55		
S9736	BH15M 10.4m	Laminite	Diametral	-	51.0	1.06	0.41	0.41		
33730	BHISWI 10.4III	Laminite	Axial	51.0	41.0	5.31	1.99	2.02		
S9737	BH15M 11.4m	Laminite	Diametral	-	51.0	1.86	0.72	0.72		
55757	51150111.111	Lummite	Axial	51.0	38.0	5.72	2.32	2.31		
S9738	BH15M 12.2m	Laminite	Diametral	-	51.0	1.03	0.40	0.40		
00700	2	Lummite	Axial	51.0	28.0	8.61	4.74	4.41		
Comr	ments:									
NAT	document are trace	ests, calibrations and/or mea able to Australian/national J/IEC 17025. This documer	standards. Accredited for			Signato	ory:		23/03/2016	
		ed Laboratory Numb	er: 14874		Chris Ll	oyd			Date: Macquarie Geotechi	
GEO									Unit 8/10 Bradford Street Alexandria NSW	

	MOIST	URE CONT	ENT TE	EST REPORT	
Client:	Environmental Investigations		Job No:	S16101	
Address:	Suite 6.01, 55 Miller Street, Pyrmo	nt, NSW 2009	Report No:	S9739-MC	
Project:	Trafalgar & Regent St, Petersham	NSW (E22913)			
Test Proce	AS4133 1.1.1 RMS T120 Moi RMS T262 Det		ation of the moisture cor rials (Standard method)		
Sampling: Preparation		with the test method		Date Sampled:	4-11/3/16
Sample No.			Sample De	scription	Moisture Content %
S9739	BH3 1.5 - 1.95m		silty C	-	25.5
Notes:					
NA	The results of the tests, calibrations a in this document are traceable to Accredited for compliance with ISO/IE	Australian/national standards.		Authorised Signatory:	C 104 /201 C
	not be reproduced, except in full.				6/04/2016
	NATA Accredited Laboratory	y Number: 14874		Chris Lloyd	Date:
MAC	QUARIE DŢECH				Macquarie Geotechnical Unit 8/10 Bradford Street Alexandria NSW 2015

	SOIL CLASSIFI	CATION	REPORT	
Client:	Environmental Investigations	Source:	BH3 1.5 - 1.95m	
Address:	Suite 6.01, 55 Miller Street, Pyrmont, NSW 2009	Sample Description:	silty CLAY	
Project:	Trafalgar & Regent St, Petersham NSW (E22913)	Report No:	S9739-PI	
Job No:	S16101	Lab No:	S9739	
Test Proce Sampling:	edure: AS1289 2.1.1 Soil moisture content tests (Oven dr.	on of the liquid limit of a so on of the liquid limit if a soi on of the plastic limit of a s of the plasticity Index of a	I - One point Casagrande method (subsidiary method) ioil - Standard method soil	4-11/3/16
Preparatio	n: Prepared in accordance with the test method			
	Liquid Limit (%): 63 Plastic Limit (%): 28 Fi Plastic Index: 35 Plasticity Chart for Classification 40 35 Clay	Linear Shri eld Moisture C n of Fine-graine	ontent (%): 25.5	
	30 25 20 15 10 5 0 10 20 30 40	0 50 iquid Limit %	60 70 80	
	The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.	: Natural State	Authorised Signatory:	
	not be reproduced, except in full.		me	6/04/2016
	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date:
	QUARIE DTECH		Unit Brad	cquarie Geotechnical t 8/10 dford Street kandria NSW 2015

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	James Zhao	Manager	Huong Crawford
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9516 0722	Telephone	+61 2 8594 0400
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499
Email	James. Zhao@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E22913 Trafalgar & Regent St, Petersham	SGS Reference	SE150099 R0
Order Number	E22913	Date Received	15/3/2016
Samples	4	Date Reported	22/3/2016

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

t.

Miliana Colati Chemist / 2IC Inorganics

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

pH in soil (1:5) [AN101] Tested: 17/3/2016

			BH7 0.5-0.9m	BH15M 3.0-3.3m	BH9M 1.4-1.5m	BH10M 0.9-1.0m
			SOIL	SOIL	SOIL	SOIL
						-
						7/3/2016
PARAMETER	UOM	LOR	SE150099.001	SE150099.002	SE150099.003	SE150099.004
pH	pH Units	-	7.3	5.1	5.8	8.0

Conductivity and TDS by Calculation - Soil [AN106] Tested: 17/3/2016

			BH7 0.5-0.9m	BH15M 3.0-3.3m	BH9M 1.4-1.5m	BH10M 0.9-1.0m
			SOIL	SOIL	SOIL	SOIL
			10/3/2016			7/3/2016
PARAMETER	UOM	LOR	SE150099.001	SE150099.002	SE150099.003	SE150099.004
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	500	110	270	360
Resistivity of extract (1:5 Dry sample basis)*	ohm m	0.1	20	95	37	28

Soluble Anions (1:5) in Soil by Ion Chromatography [AN245] Tested: 17/3/2016

			BH7 0.5-0.9m	BH15M 3.0-3.3m	BH9M 1.4-1.5m	BH10M 0.9-1.0m
			SOIL	SOIL	SOIL	SOIL
						7/3/2016
PARAMETER	UOM	LOR	SE150099.001	SE150099.002	SE150099.003	SE150099.004
Chloride	mg/kg	0.25	63	16	19	11
Sulphate	mg/kg	5	300	110	360	64

Moisture Content [AN002] Tested: 16/3/2016

			BH7 0.5-0.9m	BH15M 3.0-3.3m	BH9M 1.4-1.5m	BH10M 0.9-1.0m
			SOIL	SOIL	SOIL	SOIL
						-
						7/3/2016
PARAMETER	UOM	LOR	SE150099.001	SE150099.002	SE150099.003	SE150099.004
% Moisture	%w/w	0.5	17	24	16	6.7

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

```
FOOTNOTES -
```

*	NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.	- NVL IS LNR	Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received.	UOM LOR ↑↓	Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.	
---	---	-----------------------	--	------------------	--	--

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS	·	LABORATORY DE	TAILS	
Contact	James Zhao	Manager	Huong Crawford	
Client	Environmental Investigations	Laboratory	SGS Alexandria Environmental	
Address	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	02 9516 0741	Facsimile	+61 2 8594 0499	
Email	James. Zhao@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E22913 - Fisher & Regent St, Petersham	SGS Reference	SE150968 R0	
Order Number	E22913	Date Received	11/4/2016	
Samples	3	Date Reported	2/5/2016	

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

Required analyses can't be performed on samples #1 and 2 due to matrix interference- acidified samples were provided.

SIGNATORIES

Dong Liang Metals/Inorganics Team Leader

t.

Miliana Colati Chemist / 2IC Inorganics

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

more

Huong Crawford

Production Manager

Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 Australia f +61 2 8594 0499 Australia

kmln

Ly Kim Ha

Organic Section Head

www.sgs.com.au

SE150968 R0

pH in soil (1:5) [AN101] Tested: 12/4/2016

			BH8M 0.8-0.95
			SOIL
			- 5/4/2016
PARAMETER	UOM	LOR	SE150968.003
рН	pH Units	-	4.7

SE150968 R0

Conductivity and TDS by Calculation - Soil [AN106] Tested: 12/4/2016

			BH8M 0.8-0.95
			SOIL
			- 5/4/2016
PARAMETER	UOM	LOR	SE150968.003
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	49

Soluble Anions (1:5) in Soil by Ion Chromatography [AN245] Tested: 12/4/2016

			BH8M 0.8-0.95
			SOIL
			5/4/2016
PARAMETER	UOM	LOR	SE150968.003
Chloride	mg/kg	0.25	3.7
Sulphate	mg/kg	5	67

SE150968 R0

Moisture Content [AN002] Tested: 13/4/2016

			BH8M 0.8-0.95
			SOIL
			- 5/4/2016
PARAMETER	UOM	LOR	SE150968.003
% Moisture	%w/w	0.5	9.1

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, CI, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES	
-----------	--

*	NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.	- NVL IS LNR	Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received.	UOM LOR ↑↓	Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.	
---	---	-----------------------	--	------------------	--	--

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

ontact	James Zhao	Manager	Huong Crawford
lient	Environmental Investigations	Laboratory	SGS Alexandria Environmental
ddress	Suite 6.01, 55 Miller Street NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
ephone	02 9516 0722	Telephone	+61 2 8594 0400
acsimile	02 9516 0741	Facsimile	+61 2 8594 0499
nail	James. Zhao@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
roject	E22913 - Trafalgar and Regent St	SGS Reference	SE151676 R0
rder Number	E22913	Date Received	29/4/2016
amples	3	Date Reported	5/5/2016

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Dong Liang Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

pH in water [AN101] Tested: 2/5/2016

			BH15M	BH8M	BH10M
			WATER	WATER	WATER
			29/4/2016	29/4/2016	29/4/2016
PARAMETER	UOM	LOR	SE151676.001	SE151676.002	SE151676.003
pH**	No unit	-	6.5	6.1	5.3

Conductivity and TDS by Calculation - Water [AN106] Tested: 2/5/2016

			BH15M	BH8M	BH10M
			WATER	WATER	WATER
			29/4/2016	29/4/2016	29/4/2016
PARAMETER	UOM	LOR	SE151676.001	SE151676.002	SE151676.003
Conductivity @ 25 C	µS/cm	2	1000	610	1200

Anions by Ion Chromatography in Water [AN245] Tested: 2/5/2016

			BH15M	BH8M	BH10M
			WATER	WATER	WATER
			29/4/2016	29/4/2016	29/4/2016
PARAMETER	UOM	LOR	SE151676.001	SE151676.002	SE151676.003
Chloride	mg/L	0.05	110	49	140
Sulphate, SO4	mg/L	1	190	140	270

METHOD	METHODOLOGY SUMMARY
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES -

*	NATA accreditation does not cover the performance of this service.	- NVL	Not analysed. Not validated.	UOM LOR	Unit of Measure. Limit of Reporting.
**	Indicative data, theoretical holding time exceeded.	IS LNR	Insufficient sample for analysis. Sample listed, but not received.	↑↓	Raised/lowered Limit of Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

APPENDIX C

VIBRATION LIMITS

German Standard DIN 4150 – Part 3: 1999 provides guideline levels of vibration velocity for evaluating the effects of vibration in structures. The limits presented in this standard are generally considered to be conservative.

The DIN 4150 values (maximum levels measured in any direction at the foundation, OR, maximum levels measured in (x) or (y) directions, in the plane of the uppermost floor), are summarised in **Table A** below.

It should be noted that peak vibration velocities higher than the minimum figures in **Table A** for low frequencies may be quite 'safe', depending on the frequency content of the vibration and the actual conditions of the structures.

It should also be noted that these levels are 'safe limits', up to which no damage due to vibration effects has been observed for the particular class of building. 'Damage' is defined by DIN 4150 to include even minor non-structural cracking in cement render, the enlargement of cracks already present, and the separation of partitions or intermediate walls from load bearing walls. Should damage be observed at vibration levels lower than the 'safe limits', then it may be attributed to other causes. DIN 4150 also states that when vibration levels higher than the 'safe limits' are present, it does not necessarily follow that damage will occur. Values given are only a broad guide.

Group	Type of Structure	Peak Vibration Velocity (mm/s)			
		At Foundation Level at a Frequency of:			Plane of Floor of Uppermost Storey
		Less than 10 Hz	10 Hz to 50 Hz	50 Hz to 100 Hz	All Frequencies
1	Buildings used for commercial purposes, industrial buildings and buildings of similar design	20	20 to 40	40 to 50	40
2	Dwellings and buildings of similar design and/or use	5	5 to 15	15 to 20	15
3	Structures that because of their particular sensitivity to vibration, do not correspond to those listed in Group 1 and 2 and have intrinsic value (e.g. buildings that are under a preservation order)	3	3 to 8	8 to 10	8

Table A DIN 4150 – Structural Damage – Safe Limits for Building Vibration

Note: For frequencies above 100 Hz, the higher values in the 50 Hz to 100 Hz column should be used.

Geotechnical Investigation 3-7 Regent Street, 13-17 Regent Street & 287-309 Trafalgar Street, Petersham, NSW Report No. E22913 GA, 24 May 2016

APPENDIX D

IMPORTANT INFORMATION

Important Information

SCOPE OF SERVICES

The geotechnical report ("the report") has been prepared in accordance with the scope of services as set out in the contract, or as otherwise agreed, between the Client And Environmental Investigations Pty Ltd ("EI"). The scope of work may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

RELIANCE ON DATA

El has relied on data provided by the Client and other individuals and organizations, to prepare the report. Such data may include surveys, analyses, designs, maps and plans. El has not verified the accuracy or completeness of the data except as stated in the report. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations ("conclusions") are based in whole or part on the data, El will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to El.

GEOTECHNICAL ENGINEERING

Geotechnical engineering is based extensively on judgment and opinion. It is far less exact than other engineering disciplines. Geotechnical engineering reports are prepared for a specific client, for a specific project and to meet specific needs, and may not be adequate for other clients or other purposes (e.g. a report prepared for a consulting civil engineer may not be adequate for a construction contractor). The report should not be used for other than its intended purpose without seeking additional geotechnical advice. Also, unless further geotechnical advice is obtained, the report cannot be used where the nature and/or details of the proposed development are changed.

LIMITATIONS OF SITE INVESTIGATION

The investigation programme undertaken is a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions. The data derived from the site investigation programme and subsequent laboratory testing are extrapolated across the site to form an inferred geological model, and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite investigation, the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies. The engineering logs are the subjective interpretation of subsurface conditions at a particular location and time, made by trained personnel. The actual interface between materials may be more gradual or abrupt than a report indicates.

SUBSURFACE CONDITIONS ARE TIME DEPENDENT

Subsurface conditions can be modified by changing natural forces or man-made influences. The report is based on conditions that existed at the time of subsurface exploration. Construction operations adjacent to the site, and natural events such as floods, or ground water fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. El should be kept appraised of any such events, and should be consulted to determine if any additional tests are necessary.

VERIFICATION OF SITE CONDITIONS

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that EI be notified of any variations and be provided with an opportunity to review the recommendations of this report. Recognition of change of soil and rock conditions requires experience and it is recommended that a suitably experienced geotechnical engineer be engaged to visit the site with sufficient frequency to detect if conditions have changed significantly.

REPRODUCTION OF REPORTS

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this Company. Where information from the accompanying report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimize the likelihood of misinterpretation from logs.

REPORT FOR BENEFIT OF CLIENT

The report has been prepared for the benefit of the Client and no other party. El assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of El or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own inquiries and obtain independent advice in relation to such matters.

OTHER LIMITATIONS

El will not be liable to update or revise the report to take into account any events or emergent circumstances or fact occurring or becoming apparent after the date of the report.